Syllabus and Scheme of Examination for Chemistry (Honors) under Choice Based Credit System (CBCS) Curricula

+

UNIVERSITY OF GOUR BANGA, MALDA Draft Scheme/Broad Guidelines of UG CBCS Curriculum

Meaning of the Terms and Abbreviations

- Discipline Core (DC) Course: A course that should compulsorily be studied by a candidate as a core requirement of the programme.
- Elective Course: A Course which may be very specific or specialized or advanced or supportive to the discipline/ subject of study. These are of three types:
 - <u>A)</u> *Discipline Specific Elective (DSE) Course:* A course, which may be offered by the main discipline/subject of study.
 - <u>B)</u> <u>Generic Elective (GE) Course:</u> An elective course, chosen from related or unrelated discipline/subject of study.
 - <u>C)</u> <u>Dissertation/Project (D.P)</u>: An elective course designed to acquire special/advanced knowledge with an advisory support by a teacher/faculty member.
- Ability Enhancement Compulsory (AEC) Course: The course designed for knowledge enhancement consisting of Environmental studies, English Communication/MIL.
- Skill Enhancement Course (SEC): These courses are designed to provide value-based and/or skill-based knowledge relating to the main discipline.
- > <u>MCO:</u> Multiple Choice Questions
- MIL: Modern Indian Language
- Descriptive questions
- > <u>IA:</u> Internal Assessment (By the respective Department of the Colleges).
- Teaching terms: Lectures (L) / Tutorials (Tu) / Theory (Th) / Practical (Pr) / Dissertation/Project Work (DP) / Viva (V) / Seminar (S) / Term Paper (TP).
- > <u>ESE:</u> End Semester Examination
- ➢ <u>TBD:</u> To Be Decieted

Semeste	COURSES						
Academic Semesters	Discipline Core (DC)	Discipline Specific Elective (DSE)	Generic Elective (GE)	Ability Enhancement Compulsory (AEC)	Skill Enhancement (SEC)	Credits	Marks
SEM-I	DC1(6) DC2(6)	_	GE-1 (6)	ENVS (2)	-	20	200
SEM-II	DC3(6) DC4(6)	-	GE-2 (6)	Communicative English/Communicat ive Bengali/MIL (2)	-	20	200
SEM-III	DC5(6) DC6(6) DC7(6)	_	GE-3 (6)	-	-	24	200
SEM-IV	DC8(6) DC9(6) DC10(6)	-	EEE EG E-4 (6)	-	-	24	200
SEM-V	DC11(6) DC12(6)	DSE-1 (6) DSE-2 (6)	_	-	SE-1 (2)	26	250
SEM-VI	DC13(6) DC14(6)	DSE-3 (6) DSE-4/ DP-4(6)	-	-	SE-2 (2)	26	250
Total	-	-	-	-	-	140	1300

Semester wise course structure under CBCS for B.A/B.Sc./B.Com (Hons.) Courses

Notes:

- 1. Each course is of 50 marks
- 2. DC, DSE ,GE & DP: Each course is of 6 credits

Non-practical course: Theory - 5 credits + Tutorial- 1 credit

Practical based course: Theory - 4 credits + Practical- 2 credits

- **3.** Credit = 1 hour duration of teaching (lecture/tutorial) or 2 hour duration of practical period.
- 4. AEC and SEC: Each course is of 2 credits having no tutorial/practical period
- 5. Optional: Dissertation/ Project Work in place of one DSE in 6th semester.
- **6.** An honours student has to study two disciplines as GE. Each discipline will provide 4 papers as GE courses for SEM I to SEM IV. An Hons. Candidate has to study four GE papers from two disciplines other than concerned Hons. discipline.
- 7. For each of the DSE paper, a student has to select one paper out of two options provided.
- 8. A student other than Chemistry honours will take GE (General Elective) papers from the syllabus for Chemistry (General) as mentioned under Displine Core (DC).

No. of	Total		Division of marks of each course					Marks for question type
courses	credit	Total marks	Full marks		End semester examination			
			of each course	Internal	Theoretical	Practical	MCQ	Written
14 DC	14x6 =84	14x50=700	50 (practical based)	10	25	15	Nil	40
04 DSE	04x6=24	4x50=200	50 (practical based)	10	25	15	Nil	40
04 GE	04x6=24	4x50=200	50 (practical based)	10	25	15	Nil	40
02SE	02x2=04	2x50=100	50	10	40	Nil	Nil	40
AEC-1 (ENVS)	01x2=02	1x50=50	50	10 (Project to be internally assessed)	40	Nil	Nil	40
AEC-2 (Communi cative Bengali/En glish)	01x2=02	1x50=50	50	10	40	Nil	Nil	40
Grand Total	140	1300	-	-	-	-	-	-

Marks and Question type Distributions for Hons. Courses

Course type and credit		urses X credit ractical) Practical:02]	Number of Courses X 02 Credit (Without practical)		
	Theory	Practical	Theory	Tutorial	
Discipline Course (DC) (6)	14x4=56	14x2=28	NA	NA	
Generic Elective (GE) (6)	4x4=16	4x2=8	NA	NA	
Discipline Specific Elective (DSE) (6)	4x4=16	4x2=8	NA	NA	
Ability Enhancement Course (AEC) (2)	NA	NA	2x2=4	00	
Skill Enhancement (SE) (2)	NA	NA	2x2=4	00	
Courses Credit	88	44	8	00	
Total credit	140				

Semester	Course	Paper Code	Broad area	Credit
	Core Course-1 (Theory) (DCT1)	CEMHT-1	Organic-I	4
	Core Course-1 (Practical) (DCP1)	CEMHP-1	Organic-I	2
	Core Course-2 (Theory) (DCT2)	CEMHT-2	Physical - I	4
	Core Course-2 (Practical)(DCP2)	CEMHP-2	Physical - I	2
Ι	Generic Elective-1 (Theory) *	TBD	TBD	4
1	Generic Elective-1 (Practical)	TBD	TBD	2
	Ability Enhancement Compulsory Course-11	TBD	*English communication/ Environmental Science	2
	Core Course-3 (Theory)(DCT3)	CEMHT-3	Inorganic-I	4
	Core Course-3(Practical)(DCP3)	CEMHP-3	Inorganic-I	2
	Core Course-4 (Theory)(DCT4)	CEMHT-4	Organic - II	4
	Core Course-4 (Practical) (DCP4)	CEMHP-4	Organic - II	2
т	Generic Elective-2 (Theory)	TBD	TBD	4
II	Generic Elective-2 (Practical)	TBD	TBD	2
	Ability Enhancement Compulsory Course-2	TBD	*English Communication/ Environmental Science	2
	Core Course-5 (Theory)(DCT5)	CEMHT-5	Physical – II	4
	Core Course-5 (Practical)(DCP5)	CEMHP-5	Physical – II	2
	Core Course-6 (Theory)(DCT6)	CEMHT-6	Inorganic - II	4
	Core Course-6 (Practical)(DCP6)	CEMHP-6	Inorganic - II	2
III	Core Course-7 (Theory)(DCT7)	CEMHT-7	Organic-III	4
	Core Course-7 (Practical)(DCP)	CEMHP-7	Organic-III	2
	Generic Elective-3 (Theory)	TBD	TBD	4
	Generic Elective-3 (Practical)	TBD	TBD	2
	Core Course-8 (Theory)(DCT8)	CEMHT-8	Physical – III	4
	Core Course-8 (Practical)(DCP8)	CEMHP-8	Physical – III	2
	Core Course-9 (Theory)(DCT9)	CEMHT-9	Inorganic - III	4
IV	Core Course-9 (Practical)(DCP9)	CEMHP-9	Inorganic - III	2
	Core Course-10(Theory)(DCT10)	CEMHT-10	Organic-IV	4
	Core Course-10 (Practical)(DCP10)	CEMHP-10	Organic-IV	2
	Generic Elective-4 (Theory)	TBD	TBD	4
	Generic Elective-4 (Practical)	TBD	TBD	2
	Core Course-11 (Theory)(DCT11)	CEMHT-11	Inorganic - IV	4
	Core Course-11 (Practical)(DCP11)	CEMHP-11	Inorganic - IV	2
	Core Course-12 (Theory)(DCT12)	CEMHT-12	Organic - V	4
\mathbf{V}	Core Course-12 (Practical)(DCP12)	CEMHP-12	Organic - V	2
	Discipline Specific Elective- 1	CEMHTDSE- 1A	Advanced Physical	4

Detail Curriculum (Chemistry Honors, Semester wise)

	(Theory) (Compulsory) (DSET1)		Chemistry	
	Discipline Specific Elective-1 (Practical) (Compulsory) (DSEP1)	CEMHPDS E- 1A	Advanced Physical Chemistry	2
	Discipline Specific Elective-1 (Theory) (DSET2)	CEMHTDSE- 2A CEMHTDSE-	Analytical Methods in Chemistry Polymer Chemistry	4
	Discipline Specific Elective-1 (Practical) (DSEP2)	2B CEMHPDSE- 2A CEMHPDSE- 2B	Analytical Methods in Chemistry	2
	Skill Enhancement Course – 2 (SE- 1) (Anyone from this group)	CEMHIPUSE-2B CEMHSE-1A CEMHSE-1B	Polymer Chemistry IT skills for chemists Basic Analytical Chemistry	2
	Core Course-13 (Theory)(DCT13)	CEMHT-13	Inorganic - V	4
	Core Course-13(Practical)(DCP13)	CEMHP-13	Inorganic - V	2
	Core Course-14(Theory)(DCT14)	CEMHT-14	Physical-IV	4
	Core Course-14(Practical)(DCP14)	CEMHP-14	Physical-IV	2
	Discipline Specific Elective-3 (Theory) (DSET3) (Any One)	CEMHTDSE- 3A	Instrumental methods of Chemical Analysis	4
		CEMHTDSE- 3B	Inorganic materials of Industrial importance	4
VI	Discipline Specific Elective-2 (Practical)	CEMHPDSE- 3A	Instrumental methods of Chemical Analysis	2
	(DSEP3) (Any One)	CEMHPDSE- 3B	Inorganic materials of Industrial importance	2
	Discipline Specific Elective-4 (Theory) (DSET4)**	CEMHTDSE- 4	Green Chemistry	4
	Discipline Specific Elective- 4 (Practical)(DSEP4)**	CEMHPDSE- 4	Green Chemistry	2
	Discipline Specific Elective- 4 (DSE-4)**	DSEPROJ- 5	Project	6
	Skill Enhancement Course – 2 (SE-2) (Anyone from this group)	CEMHSE-2A	Pharmaceutical Chemistry	2
		CEMHSE-2B	Analytical Clinical Biochemistry	

** Dissertation followed by power point presentation (credit point 6) may be alternative option of taking "Green Chemistry" as Discipline Specific Elective-4 (DSE-4) and paper code is "DSEPROJ-5"

Semester - I

CEMHT-1

Organic Chemistry – I

4 Credit

Theory: Bonding and Physical Properties, General Treatment of Reaction Mechanism-I, Stereochemistry- I

1. Bonding and Physical Properties: Valence Bond Theory:

(17L)

Concept of hybridisation, shapes of molecules, resonance (including hyperconjugation); calculation of formal charges and double bond equivalent (DBE); orbital pictures of bonding (sp³, sp², sp: C-C, C-N & C-O systems and s-cis and s-trans geometry for suitable cases).

Electronic displacements:

Inductive effect, field effect, mesomeric effect, resonance energy; bond polarization and bond polarizability; electromeric effect; steric effect, steric inhibition of resonance.

MO theory:

Qualitative idea about molecular orbitals, bonding and antibonding interactions, idea about σ , σ^* , π , π^* , n - MOs; basic idea about Frontier MOs (FMO); concept of HOMO, LUMO and SOMO; interpretation of chemical reactivity in terms of FMO interactions; sketch and energy levels of π MOs of i) acyclic p orbital system (C=C, conjugated diene, triene, allyl and pentadienyl systems), ii) cyclic p orbital system (neutral systems: [4], [6]-annulenes; charged systems: 3-, 4-, 5- membered ring systems); Hückel's rules for aromaticity up to [10]-annulene (including mononuclear heterocyclic compounds up to 6-membered ring); concept of antiaromaticity and homoaromaticity; non-aromatic molecules; Frost diagram; elementary idea about α and β ; measurement of delocalization energies in terms of β for buta-1,3-diene, cyclobutadiene, hexa-1,3,5-triene and benzene.

Physical Properties:

Influence of hybridization on bond properties: bond dissociation energy (BDE) and bond energy; bond distances, bond angles; concept of bond angle strain (Baeyer's strain theory); melting point/boiling point and solubility of common organic compounds in terms of covalent & non-covalent intermolecular forces; polarity of molecules and dipole moments; relative stabilities of isomeric hydrocarbons in terms of heat of hydrogenation, heat of combustion and heat of formation.

2. General Treatment of Reaction Mechanism – I: Mechanistic Classification:

(25L)

Ionic, radical and pericyclic (definition and example); reaction type: addition, elimination and substitution reactions (definition and example); nature of bond cleavage and bond formation: homolytic and heterolytic bond fission, homogenic and heterogenic bond formation; curly arrow rules in representation of mechanistic steps; reagent type: electrophiles and nucleophiles (elementary idea); electrophilicity and nucleophilicity in terms of FMO approach.

Reactive intermediates:

Carbocations (carbenium and carbonium ions), carbanions, carbon radicals, carbenes, benzyne, nitrenes: generation and stability, structure using orbital picture and electrophilic/nucleophilic behavior of reactive intermediates (elementary idea).

3. Stereochemistry-I:

(18L)

Bonding geometries of carbon compounds and representation of molecules: Tetrahedral nature of carbon and concept of asymmetry; Fischer, sawhorse, flying-wedge and Newman projection formulae and their inter translations.

Concept of chirality and symmetry:

Symmetry elements and point groups (C_v , D_h , C_{nh} , C_{nv} , C_n , D_{nh} , D_{nd} , D_n , S_n (C_s , C_i); molecular chirality and centre of chirality; asymmetric and dissymmetric molecules; enantiomers and diastereomers; concept of epimers; concept of stereogenicity, chirotopicity and pseudoasymmetry; chiral centres and number of stereoisomerism: systems involving 1/2/3-chiral centre(s) (AA, AB, ABA and ABC types).

Relative and absolute configuration:

D/L and R/S descriptors; erythro/threo and meso nomenclature of compounds; syn/anti nomenclatures for aldols; E/Z descriptors for C=C, conjugated diene, triene, C=N and N=N systems; combination of R/S- and E/Z- isomerisms.

Optical activity of chiral compounds:

Optical rotation, specific rotation and molar rotation; racemic compounds, racemisation (through cationic, anionic, radical intermediates and through reversible formation of stable achiral intermediates); resolution of acids, bases and alcohols via diastereomeric salt formation; optical purity and enantiomeric excess; invertomerism of chiral trialkylamines.

Reference Books:

1.Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, Second edition, Oxford University Press, 2012. 2. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited. 3. Nasipuri, D. Stereochemistry of Organic Compounds, Wiley Eastern Limited. 4. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 5. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd., (Pearson Education). 6. Fleming, I. Molecular Orbitals and Organic Chemical Reactions, Reference/Student Edition, Wiley, 2009. 7. Eames, J., Peach, J. M. Stereochemistry at a Glance, Blackwell Publishing, 2003. 8. Robinson, M. J., Stereochemistry, Oxford Chemistry Primer, Oxford University Press, 2005.

CEMHP-1

Organic Chemistry – I

Practical

2 Credits

1. Separation:

Based upon solubility, by using common laboratory reagents like water (cold, hot), dil. HCl, dil. NaOH, dil. NaHCO₃, etc., of components of a binary solid mixture; purification of any one of the separated components by crystallization and determination of its melting point. The composition of the mixture may be of the following types: Benzoic acid/p-Toluidine; p-Nitrobenzoic acid/p-Aminobenzoic acid; p-Nitrotolune/p-Anisidine; etc.

2. Determination of boiling point:

Determination of boiling point of common organic liquid compounds e.g., ethanol, cyclohexane, chloroform, ethyl methyl ketone, cyclohexanone, acetylacetone, anisole, crotonaldehyde, mesityl oxide, etc. [Boiling point of the chosen organic compounds should preferably be less than 160 °C]

3. Identification of a Pure Organic Compound by chemical test(s): Solid compounds:

oxalic acid, tartaric acid, citric acid, succinic acid, resorcinol, urea, glucose, cane sugar, benzoic acid and salicylic acid.

Liquid Compounds:

formic acid, acetic acid, methyl alcohol, ethyl alcohol, acetone, aniline, dimethylaniline, benzaldehyde, chloroform and nitrobenzene.

Reference Books:

1. Bhattacharyya, R. C, A Manual of Practical Chemistry. 2. Vogel, A. I. Elementary Practical Organic Chemistry, Part 2: Qualitative Organic Analysis, CBS Publishers and Distributors. 3. Mann, F. G. & Saunders, B. C. Practical Organic Chemistry, Pearson Education (2009). 4. Furniss, B.S., Hannaford, A.J., Smith, P.W.G., Tatchell, A.R. Practical Organic Chemistry,5th Ed., Pearson (2012)

CEMHT-2	Physical Chemistry – I	4			
		Credit			
Theory: Kinetic Theory and Gaseous State, Chemical Thermodynamics, Chem Kinetics					
1. Kin	etic Theory and Gaseous State: (18L)				
Con diar coll effu Ma : Nat one thre prol ener	etic Theory of Gases: cept of pressure and temperature; Collision of gas molecules; Collision neter; Collision number and mean free path; Frequency of binary sions (similar and different molecules).Wall Collision and rate of sion. well's Distribution of Speed and Energy: ure of distribution of velocities, Maxwell's distribution of speeds in two and three dimensions; Kinetic energy distribution in one, two and e dimensions, calculations of average, root mean square and most vable values in each case; Calculation of number of molecules having gy $\geq \varepsilon$, Principle of equipartition of energy and its application to				
Rea Dev tem feat othe Crit corr exp Inte	I gas and Virial Equation: iation of gases from ideal behavior; compressibility factor; Boyle berature; Andrew's and Amagat's plots; van der Waals equation and its ures; its derivation and application in explaining real gas behaviour, r equations of state (Berthelot, Dietrici); Existence of critical state, ical constants in terms of van der Waals constants; Law of esponding states; virial equation of state; van der Waals equation essed in virial form and significance of second virial coefficient; rmolecular forces (Debye, Keesom and London interactions; Lennard - es potential - elementary idea				
Zer Inte and inte heat and and The	mical Thermodynamics: (24L) toth and 1st law of Thermodynamics: Insive and extensive variables; state and path functions; isolated, closed open systems; zeroth law of thermodynamics; Concept of heat, work, rnal energy and statement of first law; enthalpy, H; relation between capacities, calculations of q, w, U and H for reversible, irreversible free expansion of gases (ideal and van der Waals) under isothermal adiabatic conditions; Joule's experiment and its consequence. rmochemistry: dard states; Heats of reaction; enthalpy of formation of molecules				

Standard states; Heats of reaction; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; Laws of thermochemistry; bond energy, bond dissociation energy and resonance energy from thermochemical data, Kirchhoff's equations and effect of pressure on enthalpy of reactions. Adiabatic Flame Temperature, Explosion Temperature

Second Law:

Need for a Second law: statement of the second law of thermodynamics; Concept of heat reservoirs and heat engines; Carnot cycle; Physical concept of Entropy; Carnot engine and refrigerator; Kelvin –Planck and Clausius statements and equivalence of the two statements with entropic formulation; Carnot's theorem; Values of §dQ/T and Clausius inequality; Entropy change of systems and surroundings for various processes and transformations; Entropy and unavailable work; Auxiliary state functions (G and A) and their variation with T, P and V. Criteria for spontaneity and equilibrium.

Thermodynamic relation: Maxwell's relations; Gibbs-Helmholtz equation, Joule-Thomson experiment and its consequences; inversion temperature; Joule- Thomson coefficient for a van der Waals gas; General heat capacity relations.

3. Chemical Kinetics:

(18L)

Rate Law, Order and Molecularity:

Introduction of rate law, Extent of reaction; rate constants, order; Forms of rates of First, second and nth order reactions; Pseudo first order reactions (example using acid catalyzed hydrolysis of methyl acetate); Determination of order of a reaction by half -life and differential method; Opposing reactions, consecutive reactions and parallel reactions (with explanation of kinetic and thermodynamic control of products; all steps first order).

Role of Temperature and Theories of Reaction Rate:

Temperature dependence of rate constant; Arrhenius equation, energy of activation; Rate-determining step and steady-state approximation – explanation with suitable examples; Collision theory; Lindemann theory of unimolecular reaction; outline of Transition State theory (classical treatment).

Homogeneous Catalysis:

Homogeneous catalysis with reference to acid-base catalysis; Primary kinetic salt effect; Enzyme catalysis; Michaelis-Menten equation, Lineweaver-Burk plot, turn-over number. Autocatalysis; periodic reactions

Reference Books:

1.Atkins, P. W. & Paula, J. de Atkins' Physical Chemistry, Oxford University Press. 2. Castellan, G. W. Physical Chemistry, Narosa.3. McQuarrie, D. A. & Simons, J. D. Physical Chemistry: A Molecular Approach, Viva Press.4. Engel, T. & Reid, P. Physical Chemistry, Pearson. 5. Levine, I. N. Physical Chemistry, Tata McGraw-Hill. 6. Maron, S. & Prutton Physical Chemistry. 7. Ball, D. W. Physical Chemistry, Thomson Press. 8. Mortimer, R. G. Physical Chemistry, Elsevier. 9. Laidler, K. J. Chemical Kinetics, Pearson. 10. Glasstone, S. & Lewis, G.N. Elements of Physical Chemistry. 11. Rakshit, P.C., Physical Chemistry Sarat Book House. 12. Zemansky, M. W. & Dittman, R.H. Heat and

Chemical T	amics, Tata-McGraw-Hill. 13. Rastogi, R. P. & Misra, R.R. An to Chemical Thermodynamics, Vikas. 14. Clauze & Rosenberg, hermodynamics.				
CEMHP-2	Physical Chemistry – I	2 Credit			
	Practical	01001			
metho 2) Study 3) Detern measu 4) Study 5) Detern 1.Visw Books (6th Ed., Freeman Book A Experim P. edite	nination of pH of unknown solution (buffer), by colour matching d. of kinetics of acid-catalyzed hydrolysis of methyl acetate. nination of heat of solute ion of oxalic acid from solubility rement. of kinetics of decomposition of H ₂ O ₂ nination of heat of neutralization of a strong acid by a strong base. ce Books: anathan, B., Raghavan, P.S. Practical Physical Chemistry Viva (2009).2.Mendham, J., A. I. Vogel's Quantitative Chemical Analysis Pearson. 3. Harris, D. C. Quantitative Chemical Analysis. 6th Ed., n (2007). 4. Palit, S.R., De, S. K. Practical Physical Chemistry Science Agency. 5. University Hand Book of Undergraduate Chemistry nents, edited by Mukherjee, G. N., University of Calcutta. 6. Levitt, B. d Findlay's Practical Physical Chemistry Longman Group Ltd. 7. . N., Kapoor, R., Advanced Experimental ChemistryS. Chand & Co.				
	Semester-II				
CEMHT-3	Inorganic Chemistry-I	4 Credit			
Theory: E	xtra nuclear Structure of atom, Chemical periodicity, Acid-Base read Redox Reactions and precipitation reactions	ctions,			
1. Extra	nuclear Structure of atom: (15L)				
Bohr':	s theory, its limitations and atomic spectrum of hydrogen atom;				
	erfeld's Theory. Wave mechanics: de Broglie equation, Heisenberg's				
Uncor	tainty Principle and its significance, Schrödinger's wave equation,				
	significance of ψ and ψ^2 . Quantum numbers and their significance. Radial and				
signifi					
signifi angula	r wave functions for hydrogen atom. Radial and angular distribution				
signifi angula curves	ar wave functions for hydrogen atom. Radial and angular distribution b. Shapes of s, p, d and f orbitals. Pauli's Exclusion Principle, Hund's				
signifi angula curves rules a	r wave functions for hydrogen atom. Radial and angular distribution				
signifi angula curves rules a Groun	ar wave functions for hydrogen atom. Radial and angular distribution s. Shapes of s, p, d and f orbitals. Pauli's Exclusion Principle, Hund's and multiplicity, Exchange energy, Aufbau principle and its limitations,				
signifi angula curves rules a Groun 2. Chem	ar wave functions for hydrogen atom. Radial and angular distribution s. Shapes of s, p, d and f orbitals. Pauli's Exclusion Principle, Hund's and multiplicity, Exchange energy, Aufbau principle and its limitations, d state Term symbols of atoms and ions foratomic number upto 30.				
signifi angula curves rules a Groun 2. Chem Moder and pe	ar wave functions for hydrogen atom. Radial and angular distribution s. Shapes of s, p, d and f orbitals. Pauli's Exclusion Principle, Hund's and multiplicity, Exchange energy, Aufbau principle and its limitations, d state Term symbols of atoms and ions foratomic number upto 30. ical Periodicity: (15L)				

factors influencing these properties, group electronegativities. Group trends and periodic trends in these properties in respect of s-, p- and d-block elements. Secondary periodicity, Relativistic Effect, Inert pair effect.

3. Acid-Base Reactions:

(15L)

Acid-Base concept: Arrhenius concept, theory of solvent system (in H₂O, NH₃, SO₂ and HF), Bronsted-Lowry's concept, relative strength of acids, Pauling's rules. Lux-Flood concept, Lewis concept, group characteristics of Lewis acids, solvent levelling and differentiating effects. Thermodynamic acidity parameters, Drago-Wayland equation. Superacids, Gas phase acidity and proton affinity; HSAB principle. Acid-base equilibria in aqueous solution (Proton transfer equilibria in water), pH, buffer. Acid-base neutralization curves; indicator, choice of indicators.

4. Redox Reactions and Precipitation Reactions: (15L)

Ion-electron method of balancing equation of redox reaction. Elementary idea on standard redox potentials with sign conventions, Nernst equation (without derivation). Influence of complex formation, precipitation and change of pH on redox potentials; formal potential. Feasibility of a redox titration, redox potential at the equivalence point, redox indicators. Redox potential diagram (Latimer and Frost diagrams) of common elements and their applications. Disproportionation and comproportionation reactions (typical examples). Solubility product principle, common ion effect and their applications to the precipitation and separation of common metallic ions as hydroxides, sulfides, phosphates, carbonates, sulfates and halides.

Reference Books:

1.Lee, J. D. Concise Inorganic Chemistry ELBS, 1991. 2. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970. 3. Day, M.C. and Selbin, J. Theoretical Inorganic Chemistry, ACS Publications, 1962. 4. Atkin, P. Shriver & Atkins' Inorganic Chemistry 5th Ed. Oxford University Press (2010). 5. Cotton, F.A., Wilkinson, G. and Gaus, P.L., Basic Inorganic Chemistry 3rd Ed.; Wiley India. 6. Sharpe, A.G., Inorganic Chemistry, 4th Indian Reprint (Pearson Education) 2005. 7. Huheey, J. E.; Keiter, E.A. & Keiter, R.L. Inorganic Chemistry, Principles of Structure and Reactivity 4th Ed., Harper Collins 1993, Pearson, 2006. 8. Atkins, P.W. & Paula, J. Physical Chemistry, Oxford Press, 2006. 9. Mingos, D.M.P., Essential trends in inorganic chemistry. Oxford University Press (1998). 10. Winter, M. J., The Orbitron, http winter.group.shef.ac.uk/orbitron/ (2002). An illustrated gallery of atomic and molecular orbitals. 11. Burgess, J., Ions in solution: basic principles of chemical interactions. Ellis Horwood (1999)

CEMHP-3	Inorganic Chemistry – I	2

		Credit			
I	Practical	•			
	ase Titrations				
	tion of carbonate and hydroxide present together in mixture				
2. Estimation of carbonate and bicarbonate present together in a mixture.					
3. Estimation of free alkali present in different soaps/detergents.					
Oxidation-Reduction Titrimetric					
	tion of Fe(II) using standardized KMnO ₄ solution				
	tion of oxalic acid and sodium oxalate in a given mixture				
3. Estimat solution	tion of Fe(II) and Fe(III) in a given mixture using $K_2Cr_2O_7$ n.				
4. Estimat solution	tion of Fe(III) and Mn(II) in a mixture using standardized KMnO ₄				
5. Estima	tion of Fe(III) and Cu(II) in a mixture using $K_2Cr_2O_7$.				
	tion of Fe(III) and Cr(III) in a mixture using $K_2Cr_2O_7$.				
Reference H	Books:				
Mendham, J., A	A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009				
	Organia Chamistry II	4			
CEMHT-4	Organic Chemistry II	Credit			
Theory: Stere	ochemistry, General Treatment of Reaction Mechanism, Substitu Elimination Reactions	tion and			
1. Stereochen	nistry-II: (15L)				
Chirality aris	sing out of Stereo-axis:				
bonds; chiral biphenyls; rel racemisation o	sm of substituted cumulenes with even and odd number of double axis in allenes, spiro compounds, alkylidenecycloalkanes and ated configurational descriptors (R_a/S_a and P/M); atropisomerism; of chiral biphenyls; buttressing effect.				
	rostereoisomerism:				
(elementary id pro- s descript	c centre; concept of pro-chirality: topicity of ligands and faces dea); pro-R/pro-S, pro-E/pro-Z and Re/Si descriptors; pro-r and tors of ligands on pro-pseudoasymmetric centre.				
Conformation					
	nal nomenclature: eclipsed, staggered, gauche, syn and anti; e, torsion angle; Klyne-Prelog terminology; P/M descriptors; r of rotation, concept of torsional and steric strains; relative				

2. General Treatment of Reaction Mechanism II: Reaction thermodynamics:

Free energy and equilibrium, enthalpy and entropy factor, calculation of enthalpy change via BDE, intermolecular & intramolecular reactions.

Concept of organic acids and bases:

Effect of structure, substituent and solvent on acidity and basicity; proton sponge; gas-phase acidity and basicity; comparison between nucleophlicity and basicity; HSAB principle; application of thermodynamic principles in acid-base equilibria.

Tautomerism:Prototropy (keto-enol, nitro - aci-nitro, nitroso-oximino, diazoamino and enamine-imine systems); valence tautomerism and ring-chain tautomerism; composition of the equilibrium in different systems (simple carbonyl; 1,2- and 1,3-dicarbonyl systems, phenols and related systems), factors affecting keto-enol tautomerism; application of thermodynamic principles in tautomeric equilibria.

Reaction kinetics: Rate constant and free energy of activation; concept of order and molecularity; free energy profiles for one-step, two-step and three-step reactions; catalyzed reactions: electrophilic and nucleophilic catalysis; kinetic control and thermodynamic control of reactions; isotope effect: primary and secondary kinetic isotopic effect (k_H/k_D); principle of microscopic reversibility; Hammond's postulate.

3. Substitution and Elimination Reactions:(27L)Free-radical substitution reaction:

Halogentaion of alkanes, mechanism (with evidence) and stereochemical features; reactivity-selectivity principle in the light of Hammond's postulate.

Nucleophilic substitution reactions:

Substitution at sp3 centre: mechanisms (with evidence), relative rates & stereochemical features: S_N1 , S_N2 , S_N2' , S_N1' (allylic rearrangement) and S_Ni ; effects of solvent, substrate structure, leaving group and nucleophiles (including ambident nucleophiles, cyanide & nitrite); substitutions involving NGP; role of crown ethers and phase transfer catalysts; [systems: alkyl halides, allyl halides, benzyl halides, ethers, epoxides]. Concept of aliphatic electrophilic substitution reactions (S_E1 , S_E2 , S_Ei).

Elimination reactions:

E1, E2, E1cb and Ei (pyrolytic syn eliminations); formation of alkenes and alkynes; mechanisms (with evidence), reactivity, regioselectivity (Saytzeff/Hofmann) and stereoselectivity; comparison between substitution and elimination; importance of Bredt's rule relating to the formation of C=C.

Reference Books:

1.Clayden, J., Greeves, N., Warren, S. Organic Chemistry, Second edition, Oxford University Press 2012. 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003. 3. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited. 4. Carey, F. A. & Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012. 5. Loudon, G.M. Organic Chemistry, Fourth edition, Oxford University Press, 2008. 6. Eliel, E.L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London, 1994. 7. Nasipuri, D. Stereochemistry of Organic Compounds,
Wiley Eastern Limited. 8. Morrison, R. N. & Boyd, R. N. Organic Chemistry,
Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 9. Finar, I. L. Organic
Chemistry (Volume 1) Pearson Education. 10. Graham Solomons, T.W., Fryhle,
C. B. Organic Chemistry, John Wiley & Sons, Inc. 11. Eames, J., Peach, J. M.
Stereochemistry at a Glance, Blackwell Publishing, 2003. 12. Robinson, M. J. T.
Stereochemistry, Oxford Chemistry Primer, Oxford University Press, 2005. 13.
Maskill, H. Mechanisms of Organic Reactions, Oxford Chemistry Primer, Oxford
University Press. 14. March, J. Advanced Organic Chemistry, Fourth edition,
Wiley.

CEMHP-4	Organic Chemistry – II	2		
		Credit		
Practical				
	reparations:			
	lowing reactions are to be performed, noting the yield of the crude			
product:				
	tion of aromatic compounds			
	ensation reactions			
•	plysis of amides/imides/esters			
	vlation of phenols/aromatic amines			
	oylation of phenols/aromatic amines			
	chain oxidation of aromatic compounds			
	coupling reactions of aromatic amines			
	ination of anilides using green approach (Bromate-Bromide method)			
	x reaction including solid-phase method			
	n 'multi-component-coupling' reaction			
	tive reduction of m-dinitrobenzene to m-nitroaniline			
	ust also calculate percentage yield, based upon isolated yield (crude)			
and theoret				
	cation of the crude product is to be made by crystallization from			
	/alcohol, crystallization after charcoal treatment, or sublimation,			
	never is applicable.			
C. Melti	ng point of the purified product is to be noted.			
Reference				
	I. Elementary Practical Organic Chemistry, Part 1: Small scale			
Preparations	, CBS Publishers and Distributors. 2. University Hand Book of			
Undergradua	te Chemistry Experiments, edited by Mukherjee, G. N. University of			
Calcutta, 20	03. 3. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry,			

Pearson Education (2009).4. Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell, A.R. Practical Organic Chemistry, 5th Ed. Pearson (2012). 5. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000). 6. Practical Workbook Chemistry (Honours), UGBS, Chemistry, University of Calcutta, 2015.

Semester - III 4 **Physical Chemistry – II** CEMHT-5 Credit Theory: Transport Processes, Applications of Thermodynamics - I, Foundation of **Quantum Mechanics 1. Transport Processes:** (20L)Fick's law: Flux, force, phenomenological coefficients & their interrelationship (general form), different examples of transport properties **Viscosity:** General features of fluid flow (streamline flow and turbulent flow); Newton's equation, viscosity coefficient; Poiseuille's equation; Principle of determination of viscosity coefficient of liquids by falling sphere method; Temperature variation of viscosity of liquids and comparison with that of gases. Conductance and transport number: Ion conductance; Conductance and measurement of conductance, cell constant, specific conductance and molar conductance; Variation of specific and equivalent conductance with dilution for strong and weak electrolytes; Kohlrausch's law of independent migration of ions; Equivalent and molar conductance at infinite dilution and their determination for strong and weak electrolytes; Debye-Huckel theory of Ion (qualitative)-asymmetric atmosphere effect. relaxation effect and electrophoretic effect; Ostwald's dilution law; Ionic mobility; Application of conductance measurement (determination of solubility product and ionic product of water); Conductometric titrations. Transport number, Principles of Hittorf's and Moving-boundary method; Wien effect, Debye-Falkenhagen effect. Walden's rule

2. Applications of Thermodynamics –I

(20L)

Partial properties and Chemical potential: Chemical potential and activity, partial molar quantities, relation between Chemical potential and Gibb's free energy and other thermodynamic state functions; variation of Chemical potential (μ) with temperature and pressure; Gibbs-Duhem equation; fugacity and fugacity coefficient; Variation of thermodynamic functions for systems with variable composition; Equations of states for these systems, Change in G, S H and V during mixing for binary solutions.

Chemical Equilibrium: Thermodynamic conditions for equilibrium, degree of advancement; van't Hoff's reaction isotherm (deduction from chemical potential); Variation of free energy with degree of advancement; Equilibrium constant and standard Gibbs free energy change; Definitions of KP, KC and KX; van't Hoff's reaction isobar and isochore from different standard states; Shifting of equilibrium due to change in external parameters e.g. temperature and pressure; variation of equilibrium constant with addition to inert gas; Le Chatelier's principle and its derivation.

Nernst's distribution law: Application- (finding out Keq using Nernst distribution law for $KI+I_2 = KI_3$ and dimerization of benzene.

Chemical potential and other properties of ideal substances- pure and mixtures: **Pure ideal gas-**its Chemical potential and other thermodynamic functions and their changes during a change of; Thermodynamic parameters of mixing; Chemical potential of an ideal gas in an ideal gas mixture; Concept of standard states and choice of standard states of ideal gases

Condensed_Phase – Chemical potential of pure solid and pure liquids, Ideal solution – Definition, Raoult's law; Mixing properties of ideal solutions, chemical potential of a component in an ideal solution; Choice of standard states of solids and liquids

3. Foundation of Quantum Mechanics

(20L)

Beginning of Quantum Mechanics: Wave-particle duality, light as particles: photoelectric and Compton effects; electrons as waves and the de Broglie hypothesis; Uncertainty relations (without proof)

Wave function: Schrodinger time-independent equation; nature of the equation, acceptability conditions imposed on the wave functions and probability interpretations of wave function

Concept of Operators: Elementary concepts of operators, eigenfunctions and eigenvalues; Linear operators; Commutation of operators, commutator and uncertainty relation; Expectation value; Hermitian operator; Postulates of Quantum Mechanics

Particle in a box: Setting up of Schrodinger equation for one- dimensional box and its solution; Comparison with free particle eigenfunctions and eigenvalues. Properties of PB wave functions (normalisation, orthogonality, probability distribution); Expectation values of x, x2, px and px2 and their significance in relation to the uncertainty principle; Extension of the problem to two and three dimensions and the concept of degenerate energy levels

Simple Harmonic Oscillator: setting up of the Schrodinger stationary equation, energy expression (without derivation), expression of wave function for n = 0 and n = 1 (without derivation) and their characteristic features.

Reference Books

1. Atkins, P. W. & Paula, J. de Atkins', Physical Chemistry, Oxford University Press. Castellan, G. W. Physical Chemistry, Narosa. 3. McQuarrie, D. A. & Simons, J. D. Physical Chemistry: A Molecular Approach, Viva Press. 4. Levine, I. N. Physical Chemistry, Tata McGraw-Hill. 4. Rakshit, P.C., Physical Chemistry, Sarat Book House. 5. Moore, W. J. Physical Chemistry, Orient Longman. 6. Mortimer, R. G. Physical Chemistry, Elsevier. 7. Denbigh, K. The Principles of Chemical Equilibrium Cambridge University Press. 8. Engel, T. & Reid, P. Physical Chemistry, Pearson. 9. Levine, I. N. Quantum Chemistry, PHI. 10. Atkins, P. W. Molecular Quantum Mechanics, Oxford. 11. emansky, M. W. & Dittman, R.H. Heat and Thermodynamics, Tata-McGraw-Hill. 12. Rastogi, R. P. & Misra, R.R. An Introduction to Chemical Thermodynamics, Vikas. 13. Klotz, I.M., Rosenberg, R. M. Chemical Thermodynamics:Basic Concepts and Methods Wiley. 14. Glasstone, S. An Introduction to Electrochemistry, East-West Press.

CEMHP-5	Physical Chemistry – II	2 Caralita				
	Practical	Credit				
	Tachcai					
	ctometric titration of an acid (strong, weak/ monobasic, dibasic)					
U	rong base.					
	2. Study of saponification reaction conductometrically.					
acid.	ation of Ostwald's dilution law and determination of K_a of weak					
4.Study of	viscosity of unknown liquid (glycerol, sugar) with respect to water. Ination of partition coefficient for the distribution of I_2 between					
	ination of K_{eq} for KI + I_2 = KI ₃ , using partition coefficient					
(2009) 2. Men Pearson. 3. H (2007). 4. Pal Agency. 5. Un edited by Mu Findlay's Prac	n, B., Raghavan, P.S. Practical Physical Chemistry Viva Books adham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., arris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman it, S.R., De, S. K. Practical Physical Chemistry Science Book niversity Hand Book of Undergraduate Chemistry Experiments, kherjee, G. N., University of Calcutta. 6 .Levitt, B. P. edited ctical Physical Chemistry Longman Group Ltd. 7. Gurtu, J. N., dvanced Experimental Chemistry S. Chand & CoLtd.					
CEMHT-6	Inorganic Chemistry – II	4 Credit				
	ry: Chemical Bonding-I, Chemical Bonding-II, Radioactivity					
1. Chemic	al Bonding-I (21L)					
	ond: General characteristics, types of ions, size effects, radius ratio					
	l its application and limitations. Packing of ions in crystals. Born-					
	quation with derivation and importance of Kapustinskii expression					
	ce energy. Madelung constant, Born-Haber cycle and its application, on energy. Defects in solids (elementary idea). Solubility energetics					
	lution process.					
	at bond: Polarizing power and polarizability, ionic potential,					
Fazan's	rules. Lewis structures, formal charge. Valence Bond Theory. The					
hydroge	n molecule (Heitler-London approach), directional character of					

Fazan's rules. Lewis structures, formal charge. Valence Bond Theory. The hydrogen molecule (Heitler-London approach), directional character of covalent bonds, hybridizations, equivalent and nonequivalent hybrid orbitals, Bent's rule, Dipole moments, VSEPR theory, shapes of molecules and ions containing lone pairs and bond pairs (examples from main groups chemistry) and multiple bonding (σ and π bond approach).

2. Chemical Bonding-II

Molecular orbital concept of bonding (The approximations of the theory, Linear combination of atomic orbitals (LCAO)) (elementary pictorial approach): sigma and pibonds and delta interaction, multiple bonding. Orbital designations: gerade, ungerade, HOMO, LUMO. Orbital mixing, MO diagrams of H₂, Li₂, Be₂, B₂, C₂, N₂, O₂, F₂, and their ions wherever possible; Heteronuclear molecular orbitals: CO, NO, NO⁺, CN⁻, HF, BeH₂, CO₂ and H₂O. Bond properties: bond orders, bond lengths.

Metallic Bond: Qualitative idea of valence bond and band theories. Semiconductors and insulators, defects in solids.

Weak Chemical Forces: van der Waals forces, ion-dipole forces, dipoledipole interactions, induced dipole interactions, Instantaneous dipoleinduced dipole interactions. Repulsive forces, Intermolecular forces: Hydrogen bonding (theories of hydrogen bonding, valence bond treatment), receptor-guest interactions, Halogen bonds. Effects of chemical force, melting and boiling points.

3. Radioactivity

(18L)

Nuclear stability and nuclear binding energy. Nuclear forces: meson exchange theory. Nuclear models (elementary idea): Concept of nuclear quantum number, magic numbers.

Nuclear Reactions: Artificial radioactivity, transmutation of elements, fission, fusion and spallation. Nuclear energy and power generation. Separation and uses of isotopes.

Radio chemical methods: principles of determination of age of rocks and minerals, radio carbon dating, hazards of radiation and safety measures

Reference Books

1. Lee, J. D. Concise Inorganic Chemistry 5th Ed., John Wiley and sons 2008. 2. Huheey, J. E.; Keiter, E.A. & Keiter, R.L. Inorganic Chemistry, Principles of Structure and Reactivity 4th Ed., Harper Collins 1993, Pearson,2006. 3. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970. 4. Porterfield, H. W., Inorganic Chemistry, Second Edition, Academic Press, 2005. 5. Purecell, K.F. and Kotz, J.C., An Introduction to Inorganic Chemistry, Saunders: Philadelphia, 1980. 6. Cotton, F.A., Wilkinson, G., & Gaus, P.L. Basic Inorganic Chemistry 3rd Ed.; Wiley India. 7. Gillespie, R. J. and Hargittai, I., The VSEPR Model of Molecular Geometry, Prentice Hall (1992). 8. Albright, T., Orbital interactions in chemistry, John Wiley and Sons (2005). 9. Mingos, D.M.P., Essential trends in inorganic chemistry. Oxford University Press (1998). 10. Miessler, G. L., Fischer, P. J., Tarr, D. A., Inorganic Chemistry, Pearson, 5th Edition.

(21L)

CEMHP-6	Inorganic Chemistry – II	2 Credit
020000	Practical	
Iod	o / Iodimetric Titrations	
	Estimation of Cu(II)	
	Estimation of Vitamin C	
	Estimation of (i) arsenite and (ii) antimony in tartar-	
	etic iodimetrically	
4.	Estimation of available chlorine in bleaching powder	
	imation of metal content in some selective samples	
	Estimation of Cu in brass.	
	Estimation of Cr and Mn in Steel. Estimation of Fe in cement.	
3.	Estimation of Fe in cement.	
Reference		
	, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson,	
2009.		
CEMHT-7	Organic Chemistry – III	4 Credit
	Organic Chemistry – III : Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony	
Theory	Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics	
Theory 1. Ch	: Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L)	
Theory 1. Cho Ado	: Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable),	
Theory 1. Che Ade read	: Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff	
Theory 1. Cho Ado read add	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, 	
Theory 1. Che Ade read add iode	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), etivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, plactonisation, hydrohalogenation, hydration, oxymercuration- 	
Theory 1. Che Ade read add iode den	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, plactonisation, hydrohalogenation, hydration, oxymercuration- nercuration, hydroboration-oxidation, epoxidation, syn and anti- 	
Theory 1. Cho Add read add iod den hyd	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, blactonisation, hydrohalogenation, hydration, oxymercuration- nercuration, hydroboration-oxidation, epoxidation, syn and anti- roxylation, ozonolysis, addition of singlet and triplet carbenes; 	
Theory 1. Che Ade read add iode den hyd elec	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics Emistry of alkenes and alkynes: (15L) C=C: mechanism (with evidence wherever applicable), etivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, blactonisation, hydrohalogenation, hydration, oxymercuration-nercuration, hydroboration-oxidation, epoxidation, syn and anti-roxylation, ozonolysis, addition of singlet and triplet carbenes; etrophilic addition to diene (conjugated dienes and allene); radical 	
Theory 1. Che Add read add iode den hyd elec add	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics Emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, blactonisation, hydrohalogenation, hydration, oxymercuration- nercuration, hydroboration-oxidation, epoxidation, syn and anti- roxylation, ozonolysis, addition of singlet and triplet carbenes; ctrophilic addition to diene (conjugated dienes and allene); radical ition: HBr addition; mechanism of allylic and benzylic bromination in 	
Theory 1. Che Ade read add iod- den hyd elec add con	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics Emistry of alkenes and alkynes: (15L) C=C: mechanism (with evidence wherever applicable), etivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, blactonisation, hydrohalogenation, hydration, oxymercuration-nercuration, hydroboration-oxidation, epoxidation, syn and anti-roxylation, ozonolysis, addition of singlet and triplet carbenes; etrophilic addition to diene (conjugated dienes and allene); radical 	
Theory 1. Che Ade read add iode den hyd elec add con red	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, blactonisation, hydrohalogenation, hydration, oxymercuration- nercuration, hydroboration-oxidation, epoxidation, syn and anti- roxylation, ozonolysis, addition of singlet and triplet carbenes; ctrophilic addition to diene (conjugated dienes and allene); radical ition: HBr addition; mechanism of allylic and benzylic bromination in nepetition with brominations across C=C; use of NBS; dissolving metal action of alkenes; interconversion of E- and Z- alkenes; contra- 	
Theory 1. Cho Add read add iod den hyd elec add con red then	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, blactonisation, hydrohalogenation, hydration, oxymercuration- nercuration, hydroboration-oxidation, epoxidation, syn and anti- roxylation, ozonolysis, addition of singlet and triplet carbenes; etrophilic addition to diene (conjugated dienes and allene); radical ition: HBr addition; mechanism of allylic and benzylic bromination in npetition with brominations across C=C; use of NBS; dissolving metal 	
Theory 1. Che Add read add iode den hyd elec add con red ther con (Ma	 Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony <u>Related Compounds, Organometallics</u> Emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), ctivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, oblactonisation, hydrohalogenation, hydration, oxymercuration- nercuration, hydroboration-oxidation, epoxidation, syn and anti- roxylation, ozonolysis, addition of singlet and triplet carbenes; etrophilic addition to diene (conjugated dienes and allene); radical ition: HBr addition; mechanism of allylic and benzylic bromination in npetition with brominations across C=C; use of NBS; dissolving metal action of alkenes; interconversion of E- and Z- alkenes; contra- modynamic isomerization of internal alkenes. Addition to C≡C (in parison to C=C): mechanism, reactivity, regioselectivity arkownikoff and anti-Markownikoff addition) and stereoselectivity; 	
Theory 1. Che Add read add iode den hyd elec add con red ther con (Ma	: Chemistry of alkenes and alkynes, Aromatic Substitution, Carbony Related Compounds, Organometallics emistry of alkenes and alkynes: (15L) dition to C=C: mechanism (with evidence wherever applicable), etivity, regioselectivity (Markownikoff and anti- Markownikoff itions) and stereoselectivity; reactions: hydrogenation, halogenations, blactonisation, hydrohalogenation, hydration, oxymercuration- nercuration, hydroboration-oxidation, epoxidation, syn and anti- roxylation, ozonolysis, addition of singlet and triplet carbenes; etrophilic addition to diene (conjugated dienes and allene); radical ition: HBr addition; mechanism of allylic and benzylic bromination in netition with brominations across C=C; use of NBS; dissolving metal action of alkenes; interconversion of E- and Z- alkenes; contra- modynamic isomerization of internal alkenes. Addition to C≡C (in nparison to C=C): mechanism, reactivity, regioselectivity	

oxymercuration-demercuration, hydroboration-oxidation, dissolving metal reduction of alkynes (Birch); reactions of terminal alkynes by exploring

Electrophilic aromatic substitution: mechanisms and evidences in favour of it; orientation and reactivity; reactions: nitration, nitrosation,

electrophiles (reactions: chloromethylation, Gatterman-Koch, Gatterman,

Friedel-Crafts

reaction;

its acidity; interconversion of terminal and non-terminal alkynes.

2. Aromatic Substitutions:

halogenation,

sulfonation,

(9L)

one-carbon

Houben- Hoesch, Vilsmeier-Haack, Reimer-Tiemann, Kolbe-Schmidt); Ipso substitution.

Nucleophilic aromatic substitution: addition-elimination mechanism and evidences in favour of it; S_NAr mechanism; cine substitution (benzyne mechanism), structure of benzyne.

3. Carbonyl and Related Compounds:

(**30L**)

Addition to C=O: structure, reactivity and preparation of carbonyl compounds; mechanism (with evidence), reactivity, equilibrium and kinetic control; Burgi-Dunitz trajectory in nucleophilic additions; formation of hydrates, cyano hydrins and bisulphite adduct;nucleophilic addition-elimination reactions with alcohols, thiols and nitrogen- based nucleophiles; reactions: benzoin condensation, Cannizzaro and Tischenko reactions. reactions with vlides: Wittig and Corey-Chaykovsky reaction: Rupe rearrangement, oxidations and reductions: Clemmensen, Wolff-Kishner, LiAlH₄, NaBH₄, MPV, Oppenauer, Bouveault-Blanc, acyloin condensation; oxidation of alcohols with PDC and PCC; periodic acid and lead tetraacetate oxidation of 1,2-diols.

Exploitation of acidity of \alpha-H of C=O: formation of enols and enolates; kinetic and thermodynamic enolates; reactions (mechanism with evidence): halogenation of carbonyl compounds under acidic and basic conditions, Hell-Volhard-Zelinsky (H. V. Z.) reaction, nitrosation, SeO2 (Riley) oxidation; condensations (mechanism with evidence): Aldol, Knoevenagel, Claisen-Schmidt, Claisen ester including Dieckmann, Stobbe; Mannich reaction, Perkin reaction, Favorskii rearrangement; alkylation of active methylene compounds; preparation and synthetic applications of diethyl malonate and ethyl acetoacetate; specific enol equivalents (lithium enolates, enamines, aza-enolates and silyl enol ethers) in connection with alkylation, acylation and aldol type reaction.

Elementary ideas of Green Chemistry: Twelve (12) principles of green chemistry; planning of green synthesis; common organic reactions and their counterparts: reactions: Aldol, Friedel-Crafts, Michael, Knoevenagel, Cannizzaro, benzoin condensation and Dieckmann condensation.

Nucleophilic addition to α , β -unsaturated carbonyl system: general principle and mechanism (with evidence); direct and conjugate addition, addition of enolates (Michael reaction), Stetter reaction, Robinson annulations.

Substitution at sp^2 carbon (C=O system): mechanism (with evidence): B_{AC2}, A_{AC2}, A_{AC1}, A_{AL1} (in connection to acid and ester); acid derivatives: amides, anhydrides & acyl halides (formation and hydrolysis including comparison).

4. Organometallics:

(**6L**) aration ar

reactions (mechanism with evidence); addition of Grignard and
organolithium to carbonyl compounds; substitution on -COX; directed
ortho metalation of arenes using organolithiums, conjugate addition by
Gilman cuprates; Corey-House synthesis; abnormal behavior of Grignard
reagents; comparison of reactivity among Grignard, organolithiums and
organocopper reagents; Reformatsky reaction; Blaise reaction; concept of
umpolung and base-nucleophile dichotomy in case of organometallic
reagents.

Reference Books:

1.Clayden, J., Greeves, N., Warren, S. Organic Chemistry, Second edition, Oxford University Press 2012. 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003. 3. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited. 4. Carey, F. A., Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012. 5. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008. 6. Norman, R.O. C., Coxon, J. M. Principles of Organic Synthesis, Third Edition, Nelson Thornes, 2003. 7. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 8. Finar,I. L. Organic Chemistry (Volume 1), Pearson Education. 9. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc. 10. March, J. Advanced Organic Chemistry, Fourth edition, Wiley. 11. Jenkins, P. R., Organometallic Reagents in Synthesis, Oxford Chemistry Primer, Oxford University Press. 12. Ward, R. S., Bifunctional Compounds, Oxford Chemistry Primer, Oxford University Press

CEMHI	P-7 Organic Chemistry – III	2 Credit
	Practical	
1. 2.	tive Analysis of Single Solid Organic Compounds: Detection of special elements (N, S, Cl, Br) by Lassaigne's test Solubility and classification (solvents: H2O, 5% HCl, 5% NaOH and 5% NaHCO ₃)	
3.	Detection of the following functional groups by systematic chemical tests:	

- **3.** Detection of the following functional groups by systematic chemical tests:
- **4.** Aromatic amino (Ar-NH₂), aromatic nitro (Ar-NO₂), amido (-CONH₂, including imide), phenolic hydroxyl (Ph–OH), carboxylic acid (-COOH), carbonyl (-CHO and >C=O); only one test for each functional group is to be reported.
- 5. Melting point of the given compound
- **6.** Preparation, purification and melting point determination of a crystalline derivative of the given compound
- 7. Identification of the compound through literature survey.

Each student, during laboratory session, is required to carry out qualitative chemical tests for all the special elements and the functional groups with relevant derivatization in known and unknown (at least six) organic compounds

Reference Books:

Vogel, A. I. Elementary Practical Organic Chemistry, Part 2: Qualitative Organic Analysis, CBS Publishers and Distributors. 2. University Hand Book of Undergraduate Chemistry Experiments, edited by Mukherjee, G. N. University of Calcutta, 2003. 3. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009). 4. Furniss, B.S., Hannaford, A.J., Smith, P.W.G., Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012). 5. Clarke,H. T., A Handbook of Organic Analysis (Qualitative and Quantitative), Fourth Edition, CBS Publishers and Distributors (2007). 6. Practical Workbook Chemistry (Honours), UGBS, Chemistry, University of Calcutta, 2015.

	Semester - IV	
CEMHT-8	Physical-III	4 Credit
	ation of Thermodynamics- II, Electrical properties of molecules, Quantum	Chemistry
-	plication of Thermodynamics – II (20 L)	
	lligative properties: Vapour pressure of solution; Ideal solutions,	
	ally dilute solutions and colligative properties; Raoult's law; ermodynamic derivation using chemical potential to derive relations	
	ween the four colligative properties [(i) relative lowering of vapour	
	ssure, (ii) elevation of boiling point, (iii) Depression of freezing	
-	nt,(iv) Osmotic pressure and amount of solute. Applications in	
-	culating molar masses of normal, dissociated and associated solutes	
in s	solution; Abnormal colligative properties.	
Ph	ase rule: Definitions of phase, component and degrees of freedom;	
	ase rule and its derivations; Definition of phase diagram; Phase diagram	
for	water, CO2, Sulphur. First order phase transition and Clapeyron	
-	ation; Clausius-Clapeyron equation derivation and use; Liquid vapour	
	illibrium for two component systems; Phenol- water system. Three	
	nponent systems, water-chloroform-acetic acid system, triangular plots.	
	nary solutions: Ideal solution at fixed temperature and pressure;	
	nciple of fractional distillation; Duhem-Margules equation; Henry's v; Konowaloff's rule; Positive and negative deviations from ideal	
	avior; Azeotropic solution; Liquid- liquid phase diagram using	
	enol-water system; Solid-liquid phase diagram; Eutectic mixture.	
2. Ele	ectrical Properties of molecules (20 L)	
	ic equilibria: Chemical potential of an ion in solution; Activity	
and	activity coefficients of ions in solution; Debye-Huckel limiting law-	
brie	ef qualitative description of the postulates involved, qualitative idea	
of	the model, the equation (without derivation) for ion-ion atmosphere	

interaction potential. Estimation of activity coefficient for electrolytes using Debye-Huckel limiting law; Derivation of mean ionic activity coefficient from the expression of ion-atmosphere interaction potential; Applications of the equation and its limitations.

Electromotive Force: Quantitative aspects of Faraday's laws of electrolysis, rules of oxidation/reduction of ions based on half-cell potentials, applications of electrolysis in metallurgy and industry; Chemical cells, reversible and irreversible cells with examples; Electromotive force of a cell and its measurement, Nernst equation; Standard electrode (reduction) potential and its application to different kinds of half- cells. Application of EMFmeasurements in determining (i) free energy, enthalpy and entropy of a cell reaction, (ii) equilibrium constants, and (iii) pH values, using hydrogen, quinone-hydroquinone, glass electrodes.

Concentration cells with and without transference, liquid junction potential; Determination of activity coefficients and transference numbers; Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation).

Dipole moment and polarizability: Polarizability of atoms and molecules, dielectric constant and polarisation, molar polarisation for polar and non-polar molecules; Clausius-Mosotti equation and Debye equation (both without derivation) and their application; Determination of dipole moments.

3. Quantum Chemistry

(20 L)

Angular momentum: Commutation rules, quantization of square of total angular momentum and z-component; Rigid rotator model of rotation of diatomic molecule; Schrödinger equation, transformation to spherical polar coordinates; Separation of variables. Spherical Harmonics, Discussion of solution.

Qualitative treatment of hydrogen atom and hydrogen-like ions: Setting up of Schrödinger equation in spherical polar coordinates, radial part, quantization of energy (only final energy expression); Average and most probable distances of electron from nucleus; Setting up of Schrödinger equation for many-electron atoms (He, Li).

LCAO and HF-SCF: Covalent bonding, valence bond and molecular orbital approaches, LCAO-MO treatment of H_2^+ ; Bonding and antibonding orbitals; Qualitative extension to H2; Comparison of LCAO-MO and VB treatments of H₂ and their limitations; Hartree-Fock method development, SCF and configuration interaction (**only basics**).

Paula McQ Appro McG Morti Physi Atkin Reid, Princ R. M 13.	ooks tellan, G. W. Physical Chemistry, Narosa. 2. Atkins, P. W. & , J. de Atkins', Physical Chemistry, Oxford University Press. 3. uarrie, D. A. & Simons, J. D. Physical Chemistry: A Molecular oach, VivaPress. 4. Levine, I. N. Physical Chemistry, Tata raw-Hill . 5. Moore, W. J. Physical Chemistry, Orient Longman. 6. mer, R. G. Physical Chemistry, Elsevier. 7. Engel, T. & Reid, P. cal Chemistry, Pearson. 8. Levine, I. N. Quantum Chemistry, PHI. 9. s, P. W. Molecular Quantum Mechanics, Oxford. 10. Engel, T. & P. Physical Chemistry, Pearson. 11. Maron, S.H., Prutton, C. F., iples of Physical Chemistry, McMillan. 12. Klotz, I.M., Rosenberg, . Chemical Thermodynamics:Basic Concepts and MethodsWiley. Rastogi, R. P. & Misra, R.R. An Introduction to Chemical nodynamics, Vikas. 14	
CEMHP-8	Physical-III	2 Credit
	Practical	
with 6 2. Poten soluti 3. Deter again 4. Effec 5. Study 6. pH-m Reference B Viswanatha (2009) 2. M Pearson. 3 (2007). 4. I Agency. 5. edited by M Findlay's P	mination of K _{sp} for AgCl by potentiometric titration of AgNO ₃ solution st standard KCl solution t of ionic strength on the rate of Persulphate – Iodide reaction of phenol-water phase diagram hetric titration of acid (mono- and di-basic) against strong base ooks n, B., Raghavan, P.S. Practical Physical Chemistry Viva Books lendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman Palit, S.R., De, S. K. Practical Physical Chemistry Science Book University Hand Book of Undergraduate Chemistry Experiments, Mukherjee, G. N., University of Calcutta. 6 .Levitt, B. P. edited ractical Physical Chemistry Longman Group Ltd. 7. Gurtu, J. N., Advanced Experimental Chemistry	
СЕМНТ-9	Inorganic Chemistry – III	4 Credit
Theory: Q	General Principles of Metallurgy, Chemistry of s and p Block Eleme Nable Cases, Increasing Bolymour, Coordination Chemistry, J	ents,
1 0	Noble Gases, Inorganic Polymers, Coordination Chemistry-I	
	ral Principles of Metallurgy: (15L)	
	modes of occurrence of metals based on standard electrode	
potentials. Ellingham diagrams for reduction of metal oxides using		
carbo	n and carbon monoxide as reducing agent. Electrolytic Reduction,	

Hydrometallurgy. Methods of purification of metals: Electrolytic Kroll process, Parting process, van Arkel-de Boer process and Mond's process, Zone refining.

2. Chemistry of s and p Block Elements:

Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Beryllium hydrides and halides. Boric acid and borates, boron nitrides, borohydrides (diborane) and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, phosphorus, sulphur and chlorine. Peroxo acids of sulphur, sulphur- nitrogen compounds, interhalogen compounds, polyhalide ions, pseudohalogens, Fluorocarbons and basic properties of halogens.

3. Noble Gases:

Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF₂, XeF₄ and XeF₆; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF₂ and XeF₄). Xenon-oxygen compounds. Molecular shapes of noble gas compounds (VSEPR theory).

4. Inorganic Polymers:

Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphazenes.

5. Coordination Chemistry-I:

(15L)

(10L)

(10L)

Coordinate bonding: double and complex salts. Werner's theory of coordination complexes, Classification of ligands, Ambidentate ligands, chelates, Coordination numbers, IUPAC nomenclature of coordination complexes (up to two metal centers), Isomerism in coordination compounds, constitutional and stereo isomerism, Geometrical and optical isomerism in square planar and octahedral complexes.

Reference Books

1.Huheey, J. E.; Keiter, E.A. & Keiter, R.L. Inorganic Chemistry, Principles of Structure and Reactivity 4th Ed., Harper Collins 1993, Pearson,2006. 2. Greenwood,N.N. & Earnshaw A. Chemistry of the Elements, Butterworth-Heinemann, 1997. 3. Cotton, F.A., Wilkinson, G., Murrillo, C. A., Bochmann, M., Advanced Inorganic Chemistry 6th Ed. 1999., Wiley. 4. Miessler, G. L. & Donald, A. Tarr. Inorganic Chemistry 4th Ed., Pearson, 2010. 5. Purecell, K.F. and Kotz, J.C., An Introduction to Inorganic Chemistry, Saunders: Philadelphia, 1980. 6. Mingos, D.M.P., Essential trends in inorganic chemistry. Oxford University Press (1998). 7. Anil J. Elias, The Chemistry of *p*-Block elements: Synthese, Reactions and Applications.

(10L)

CEMHP-9	Inorganic Chemistry – III	2 Credit
Practical		
Complexon	netric titration	
$1 7_{n}(\mathbf{H})$		
 Zn(II) Zn(II) in 	o $7n(II)$ and $Cu(II)$ minimum	
	a Zn(II) and Cu(II) mixture.	
	nd Mg(II) in a mixture.	
4. Hardnes	s of water.	
Inorganic p	reparations	
1. [Cu(CH ₃ 0	$(N)_4]PF_6/ClO_4$	
2. Cis and t	rans $K[Cr(C_2O_4)_2(H_2O)_2]$	
	$CN)_4]PF_6/ClO_4$	
4. Cis and t	rans K[Cr(C ₂ O ₄) ₂ (H ₂ O) ₂]	
5. Potassiun	n dioxalatodiaquachromate(III)	
6. Tetraami	ninecarbonatocobalt (III) ion	
7. Potassiun	n tris(oxalate)ferrate(III)	
8. Tris-(ethy	lenediamine) nickel(II) chloride.	
9. [Mn(acac) ₃] and Fe(acac) ₃] (acac= acetylacetonate)	
Reference Boo	ks	
Mendham, J., A	A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson,	
2009.		
		4
CEMHT-10	Organic Chemistry – IV	4 Credit
Theory: Nit	⊥ rogen compounds, Rearrangements, The Logic of Organic Syntl	
1 11001 y . 1411	Organic Spectroscopy.	10313,
1 Nitroge	n compounds: (9L)	
	Aliphatic & Aromatic: preparation, separation (Hinsberg's	
	and identification of primary, secondary and tertiary amines;	
	(with mechanism): Eschweiler–Clarke methylation, diazo	
	reaction, Mannich reaction; formation and reactions of	

phenylenediamines, diazomethane and diazoacetic ester. **Nitro compounds (aliphatic and aromatic):** preparation and reaction (with mechanism): reduction under different conditions; Nef carbonyl synthesis, Henry reaction and conjugate addition of nitroalkane anion.

Alkylnitrile and isonitrile: preparation and reaction (with mechanism): Thorpe nitrile condensation, von Richter reaction.

Diazonium salts and their related compounds: reactions (with mechanism) involving replacement of diazo group; reactions: Gomberg, Meerwein, Japp-Klingermann.

2. Rearrangements: (11L) Mechanism with Evidence and Stereochemical Features for the Following Rearrangement to electron-deficient carbon: WagnerMeerwein rearrangement, pinacol rearrangement, dienone-phenol; Wolff rearrangement in Arndt-Eistert synthesis, benzil-benzilic acid rearrangement, Demjanov rearrangement, Tiffeneau–Demjanov rearrangement.

Rearrangement to electron-deficient nitrogen: rearrangements: Hofmann, Curtius, Lossen, Schmidt and Beckmann.

Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation, cumene hydroperoxide-phenol rearrangement and Dakin reaction.

Aromatic rearrangements: Migration from oxygen to ring carbon: Fries rearrangement and Claisen rearrangement.

Migration from nitrogen to ring carbon: Hofmann-Martius rearrangement, Fischer-Hepp rearrangement, N-azo to C-azo rearrangement, Bamberger rearrangement, Orton rearrangement and benzidine rearrangement.

Rearrangement reactions by green approach: Fries rearrangement, Claisen rearrangement, Beckmann rearrangement, Baeyer-Villiger oxidation.

3. The Logic of Organic Synthesis:

(20L)

Retrosynthetic analysis: disconnections; synthons, donor and acceptor synthons; natural reactivity and umpolung; latent polarity in bifunctional compounds: consonant and dissonant polarity; illogical electrophiles and nucleophiles; synthetic equivalents; functional group interconversion and addition (FGI and FGA); C-C disconnections and synthesis: one-group and two-group (1,2- to 1,5-dioxygenated compounds), reconnection (1,6-dicarbonyl); protection-deprotection strategy (alcohol, amine, carbonyl, acid).

Strategy of ring synthesis: thermodynamic and kinetic factors; synthesis of large rings, application of high dilution technique.

Asymmetric synthesis: stereoselective and stereospecific reactions; diastereoselectivity and enantioselectivity (only definition); enantioselectivity: kinetically controlled MPV reduction; diastereoselectivity: addition of nucleophiles to C=O adjacent to a stereogenic centre: Felkin-Anh and Zimmermann-Traxler models.

4. Organic Spectroscopy:

(20L)

UV Spectroscopy: introduction; types of electronic transitions, end absorption; transition dipole moment and allowed/forbidden transitions; chromophores and auxochromes; Bathochromic and Hypsochromic shifts; intensity of absorptions (Hyper-/Hypochromic effects); application of Woodward's Rules for calculation of λ max for the following systems: conjugated diene, α , β -unsaturated aldehydes and ketones (alicyclic, homoannular and heteroannular); extended conjugated systems (dienes, aldehydes and ketones); relative positions of λ max considering conjugative effect, steric effect, solvent effect, effect of pH; effective chromophore concentration: keto-enol systems; benzenoid

transitions.

IR Spectroscopy: introduction; modes of molecular vibrations (fundamental and non-fundamental); IR active molecules; application of Hooke's law, force constant; fingerprint region and its significance; effect of deuteration; overtone bands; vibrational coupling in IR; characteristic and diagnostic stretching frequencies of C-H, N-H, O-H, C-O, C-N, C-X, C=C (including skeletal vibrations of aromatic compounds), C=O, C=N, N=O, C=C, C=N; characteristic/diagnostic bending vibrations are included; factors affecting stretching frequencies: effect of conjugation, electronic effects, mass effect, bond multiplicity, ring-size, solvent effect, H-bonding on IR absorptions; application in functional group analysis.

NMR Spectroscopy: introduction; nuclear spin; NMR active molecules; basic principles of Proton Magnetic Resonance; equivalent and non-equivalent protons; chemical shift and factors influencing it; ring current effect; significance of the terms: up-/downfield, shielded and deshielded protons; spin coupling and coupling constant (1st order spectra); relative intensities of first-order multiplets: Pascal's triangle; chemical and magnetic equivalence in NMR ; elementary idea about non-first-order splitting; anisotropic effects in alkene, alkyne, aldehydes and aromatics;

NMR peak area, integration; relative peak positions with coupling patterns of common organic compounds (both aliphatic and benzenoid-aromatic); rapid proton exchange; interpretation of NMR spectra of simple compounds.

Applications of IR, UV and NMR spectroscopy for identification of simple organic molecules.

Reference Books

1. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 2. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 3. Norman, R.O. C., Coxon, J. M. Principles of Organic Synthesis, Third Edition, Nelson Thornes, 2003. 4. Clayden, J., Greeves, N., Warren, S., Organic Chemistry, Second edition, Oxford University Press 2012. 5. Silverstein, R. M., Bassler, G. C., Morrill, T. C. Spectrometric Identification of Organic Compounds, John Wiley and Sons, INC, Fifth edition. 6. Kemp, W. Organic Spectroscopy, Palgrave. 6. Pavia, D. L. et al. Introduction to Spectroscopy, 5th Ed. Cengage Learning India Ed. (2015). 7. Dyer, J. Application of Absorption Spectroscopy of Organic Compounds, PHI Private Limited. 8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley.9. Harwood, L. M., Polar Rearrangements, Oxford Chemistry Primer, Oxford University Press. 10. Bailey, Morgan, Organonitrogen Chemistry, Oxford Chemistry Primer, Oxford University Press. Warren, S. Organic Synthesis the Disconnection Approach, John Wiley and Sons. Warren, S., Designing Organic Synthesis, Wiley India, 2009. 13. Carruthers, W. Modern methods of Organic Synthesis, Cambridge University

Press. 14.	Willis, C. A., Wills, M., Organic Synthesis, Oxford Chemistry	
Primer, Ox	ford University Press.	
CEMHP-10	Organic Chemistry – IV	2 Credit
	Practical	
List of I	Practical	
1. Estim	ation of glycine by Sörensen's formol method	
2. Estim	ation of glucose by titration using Fehling's solution	
3. Estim	ation of sucrose by titration using Fehling's solution	
4. Estim	ation of vitamin-C (reduced)	
5. Estim	ation of aromatic amine (aniline) by bromination (Bromate-Bromide)	
metho		
	ation of phenol by bromination (Bromate-Bromide) method	
	nation of formaldehyde (Formalin)	
	nation of acetic acid in commercial vinegar	
	nation of urea (hypobromite method)	
	nation of saponification value of oil/fat/ester	
Reference		
	V. Quantitative Organic Analysis, Pearson, 2. University Hand Book	
0	aduate Chemistry Experiments, edited by Mukherjee, G. N.,	
University	of Calcutta	
	Semester - V	1
CEMHT-11	Inorganic- IV	4 Credit

CEMHT-11	Inorganic- IV	4 Credit
Theory: Coordination Chemistry-II, Chemistry of d- and f- block elements		
1. Coord	lination Chemistry-II: (30L)	
VB de	scription and its limitations. Elementary Crystal Field Theory:	
fields, fields; Octab concep compl oxidat	ng of d ⁿ configurations in octahedral, square planar and tetrahedral crystal field stabilization energy (CFSE) in weak and strong pairing energy. Spectrochemical series. Jahn- Teller distortion. edral site stabilization energy (OSSE). Metal-ligand bonding (MO ot, elementary idea), sigma- and pi-bonding in octahedral exes (qualitative pictorial approach) and their effects on the ion states of transitional metals (examples). etism and Colour : Orbital and spin magnetic moments, spin only	
mome mome idea v Orgel electro	nts of d^n ions and their correlation with effective magnetic nts, including orbital contribution; quenching of magnetic nt: super exchange and antiferromagnetic interactions (elementary with examples only); d-d transitions; L-S coupling; qualitative diagrams for $3d^1$ to $3d^9$ ions. Racah parameter. Selection rules for onic spectral transitions; spectrochemical series of ligands; charge er spectra (elementary idea).	

2 Cher	mistry of d- and f- block elements: (30L)	
Gen confi	eral comparison of 3d, 4d and 5d elements in term of electronic guration, oxidation states, redox properties, coordination nistry.	
	moids and Actinoids:	
Genera	l Comparison on Electronic configuration, oxidation states,	
	spectral and magnetic properties; lanthanide contraction, ion of lanthanides (ion-exchange method only).	
Reference Boo	oks	
1.Huheey, J.	E.; Keiter, E.A. & Keiter, R.L. Inorganic Chemistry, Principles	
	and Reactivity 4th Ed., Harper Collins 1993, Pearson,2006. 2.	
	N.N. & Earnshaw A. Chemistry of the Elements,	
	Heinemann. 1997.3. Cotton, F.A., Wilkinson, G., Murrillo, C. A.,	
	M., Advanced Inorganic Chemistry 6th Ed. 1999., Wiley. 4. river & Atkins' Inorganic Chemistry 5th Ed. Oxford University	
	. 5. Purecell, K.F. and Kotz, J.C., An Introduction to Inorganic	
	aunders: Philadelphia, 1980. 6. Sinha, S. P., Ed., Lanthanide and	
•	search (Journal, Vol. 1, 1986). 7. Wulfsberg, G., Principles of	
	norganic Chemistry, Brooks/Cole: Monterey, CA, 1987.	
Ĩ		
CEMHP-11	Inorganic Chemistry – IV	2 Credit
	Practical	
Chromata	graphy of metal ions	
separation	nvolved in chromatographic separations. Paper chromatographic of following metal ions:	
a) Ni (II) a		
b) Fe (III)	and Al (III)	
Gravimet	•	
,	ion of nickel (II) using Dimethylglyoxime (DMG).	
· ·	ion of copper as CuSCN	
,	ion of Al (III) by precipitating with oxine and weighing as ne)3 (aluminium oxinate)	
	ion of chloride	
Spectroph		
	•	
	ement of 10Dq by spectrophotometric method.	
,	nation of λ_{max} of [Mn(acac) ₃] and [Fe(acac) ₃] complexes	
b) Determi	nation of λ_{max} of [Mn(acac) ₃] and [Fe(acac) ₃] complexes	
b) Determi Reference Boo	nation of λ_{max} of [Mn(acac) ₃] and [Fe(acac) ₃] complexes	

CEMHT-1	2 Organic Chemistry – V	4 Credi
Theory	Carbocycles and Heterocycles, Cyclic Stereochemistry, Pericyclic rea Carbohydrates, Carbohydrates, Biomolecules	ctions,
Pe in sy ru	arbocycles and Heterocycles: (16L) blynuclear hydrocarbons and their derivatives: synthetic methods clude Haworth, Bardhan-Sengupta, Bogert-Cook and other useful ntheses (with mechanistic details); fixation of double bonds and Fries le; reactions (with mechanism) of naphthalene, anthracene, enanthrene and their derivatives.	
re py ap sy an py or m (ii Fi	eterocyclic compounds: 5- and 6-membered rings with one heteroatom; activity, orientation and important reactions (with mechanism) of furan, rrole, thiophene and pyridine; synthesis (including retrosynthetic proach and mechanistic details): pyrrole: Knorr synthesis, Paal-Knorr nthesis, Hantzsch; furan: Paal-Knorr synthesis, Feist-Benary synthesis d its variation; thiophenes: Paal-Knorr synthesis, Hinsberg synthesis; ridine: Hantzsch synthesis; benzo-fused 5- and 6-membered rings with e heteroatom: reactivity, orientation and important reactions (with echanistic details) of indole, quinoline and isoquinoline; synthesis neluding retrosynthetic approach and mechanistic details): indole: scher, Madelung and Reissert; quinoline: Skraup, Doebner- Miller, iedlander; isoquinoline: Bischler-Napieralski synthesis.	
A cy an cc ar su re la	vclic Stereochemistry: (9L) icyclic compounds: concept of I-strain; conformational analysis: clohexane, mono and disubstituted cyclohexane; symmetry properties d optical activity; topomerisation; ring-size and ease of cyclisation; nformation & reactivity in cyclohexane system: consideration of steric d stereoelectronic requirements; elimination (E2, E1), nucleophilic bstitution (SN1, SN2, SNi, NGP), merged substitution-elimination; arrangements; oxidation of cyclohexanol, esterification, saponification, ctonisation, epoxidation, pyrolytic syn elimination and fragmentation actions.	
3. Po M re ph C ph Si or	Actions:(9L)echanism, stereochemistry, regioselectivity in case of Electrocyclicactions:FMO approach involving 4π - and 6π -electrons (thermal and otochemical) and corresponding cycloreversion reactions.vcloaddition reactions:FMO approach, Diels-Alder reaction, otochemical [2+2] cycloadditions.gmatropic reactions:FMO approach, sigmatropic shifts and their der; [1,3]- and [1,5]-H shifts and [3,3]-shifts with reference to Claisen d Cope rearrangements.	

4. Carbohydrates: (13L)Monosaccharides: Aldoses up to 6 carbons; structure of D-glucose & D- fructose (configuration & conformation); ring structure of (furanose pyranose forms): monosaccharides and Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation); mutarotation; epimerization; reactions (mechanisms in relevant cases): Fischer glycosidation, osazone formation, bromine-water oxidation, HNO₃ oxidation, selective oxidation of terminal –CH₂OH of aldoses, reduction to alditols, Lobry de Bruyn-van Ekenstein rearrangement; stepping-up (Kiliani-Fischer method) and stepping-down (Ruff's & Wohl's methods) of aldoses; endgroup-interchange of aldoses; acetonide (isopropylidene) and benzylidene protections; ring-size determination; Fischer's proof of configuration of (+)-glucose. Disaccharides: Glycosidic linkages, concept of glycosidic bond

formation by glycosyl donor-acceptor; structure of sucrose, inversion of cane sugar. **Polysaccharides:** starch (structure and its use as an indicator in titrimetric analysis).

5. Biomolecules:

Amino acids: synthesis with mechanistic details: Strecker, Gabriel, acetamido malonic ester, azlactone, Bücherer hydantoin synthesis, synthesis involving diketopiperazine; isoelectric point, zwitterions; electrophoresis, reaction (with mechanism): ninhydrin reaction, Dakin-West reaction; resolution of racemic amino acids.

(13L)

Peptides: peptide linkage and its geometry; syntheses (with mechanistic details) of peptides using N-protection & C-protection, solid-phase (Merrifield) synthesis; peptide sequence: C-terminal and N-terminal unit determination (Edman, Sanger & 'dansyl' methods); partial hydrolysis; specific cleavage (enzymatic) of peptides: use of CNBr.

Nucleic acids: pyrimidine and purine bases (only structure & nomenclature); nucleosides and nucleotides corresponding to DNA and RNA; mechanism for acid catalysed hydrolysis of nucleosides (both pyrimidine and purine types); comparison of alkaline hydrolysis of DNA and RNA; elementary idea of double helical structure of DNA (Watson-Crick model); complimentary base–pairing in DNA.

Reference Books

1. Clayden, J., Greeves, N., Warren, S. Organic Chemistry, Second edition, Oxford University Press 2012. 2. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds, Wiley: London. 3. Nasipuri, D. Stereochemistry of Organic Compounds, Wiley Eastern Limited. 4. Sengupta, Subrata. Basic Stereochemistry of Organic molecules. 5. Kalsi, P. S. Stereochemistry

Conformation and Mechanism, Eighth edition, New Age International, 2014. 6. Fleming, I. Molecular Orbitals and Organic Chemical reactions, Reference/Student Edition, Wiley, 2009. 7. Fleming, I. Pericyclic Reactions, Oxford Chemistry Primer, Oxford University Press. 8. Gilchrist, T. L. & Storr, R. C. Organic Reactions and Orbital symmetry, Cambridge University Press. 9. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 10. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 11. Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). 12. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press. 13. Eames, J., Peach, J. M. Stereochemistry at a Glance, Blackwell Publishing, 2003. 14. Robinson, M. J. T., Stereochemistry, Oxford Chemistry Primer, Oxford University Press, 2005. 15. Davis, B. G., Fairbanks, A. J., Carbohydrate Chemistry, Oxford Chemistry Primer, Oxford University Press. 16. Joule, J. A. Mills, K. Heterocyclic Chemistry, Blackwell Science. 17. Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, John Wiely & Sons (1976).18. Gilchrist, T. L. Heterocyclic Chemistry, 3rd edition, Pearson. 19. Bansal, R. K. Heterocyclic Chemistry, New Age International Publishers. 20. Davies, D. T., Heterocyclic Chemistry, Oxford Chemistry Primer, Oxford University Press.		
CEMHP-12 Organic Chemistry – V	2 Credit	
Practical 1. Column chromatographic separation of mixture of dyes		
 Column chromatographic separation of a mixture of dyes Paper chromatographic separation of a mixture containing 2/3 amino acids 		
 Paper chromatographic separation of a mixture containing 2/3 animo acids Paper chromatographic separation of a mixture containing 2/3 sugars 		
4. TLC separation of a mixture containing 2/3 amino acids		
5. TLC separation of a mixture of dyes (fluorescein and methylene blue)		
6. Column chromatographic separation of leaf pigments from spinach leaves		
Spectroscopic Analysis of Organic Compounds:		

- 1. Assignment of labelled peaks in the 1H NMR spectra of the known organic compounds explaining the relative δ -values and splitting pattern.
- 2. **Assignment** of labelled peaks in the IR spectrum of the same compound explaining the relative frequencies of the absorptions (C-H, O-H, N-H, C-O, C-N, C-X, C=C, C=O, N=O, C≡C, C≡N stretching frequencies; characteristic bending vibrations are included).
- 3. The students must record full spectral analysis of at least 15 (fifteen) compounds from the following list:
- 1) 4-Bromoacetanilide
- 2) Vanillin
- 3) 4-Aminobenzoic acid

4) Salicylamide	
5) 1,3-Dinitrobenzene	
6) Benzylacetate	
7) 4-Nitrobenzaldehyde	
8) Mesityl oxide	
9) 2-Hydroxybenzaldehyde	
10) 4-Nitroaniline	
11) 3-Nitrobenzaldehyde	
12) 2-Methoxybenzaldehyde	
13) Methyl 4-hydroxybenzoate	
14) 3-Aminobenzoic acid	
15) 3-Methylacetanilide	
16) 5-Methyl-2-nitroanisole	
17) 2-Bromo-4'-methylacetophenone	
18) 2-Methoxyacetophenone	
19) 2-Hydroxyacetophenone	
20) trans-4-NitrocinnamaldehydE	
21) Diethyl fumarate	
22) 4-Methylacetanilide	
23) 2-Hydroxy-3-nitrobenzaldehyde	
24) 2,3-Dimethylbenzonitrile	
25) Pent-1-yn-3-ol	
26) 3-Ethoxy-4-hydroxybenzaldehyde	
27) Methyl 3-hydroxybenzoate	
28) Ethyl 3-aminobenzoate	
29) Ethyl 4-aminobenzoate	
30) 3-nitroanisole	
Reference Books	
1. University Hand Book of Undergraduate Chemistry Experiments, edited by	
Mukherjee, G. N. University of Calcutta, 2003. 2. Practical Workbook	
Chemistry (Honours), UGBS, Chemistry, University of Calcutta, 2015. 3.	
Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic	
Chemistry, 5th Ed., Pearson (2012). 4. Mann, F.G. & Saunders, B.C. Practical	
Organic Chemistry, Pearson Education.	

CEMHTDS E-1A	Advanced Physical Chemistry	4 Credit
Theory: Cr	ystal Structure, Statistical Thermodynamics, Special se	lected topics,
1. Cryst	tal Structure (20	L)
Brava	ais Lattice and Laws of Crystallography: Types of so	olid,
Bragg	g's law of diffraction; Laws of crystallography (Haüy's law	and
	's law); Permissible symmetry axes in crystals; Lattice, sp	
lattice	e, unit cell, crystal planes, Bravais lattice. Packing of uniform h	nard

sphere, close packed arrangements (fcc and hcp).

Tetrahedral and octahedral voids Void space in P-type,F-type, I-type cubic systems. Crystal planes: Distance between consecutive planes [cubic, tetragonal and orthorhombic lattices]; Indexing of planes, Miller indices; calculation of dhkl; Relation between molar mass and unit cell dimension for cubic system; Bragg's law (derivation).

Determination of crystal structure: Powder method; Structure of NaCl and KCl crystals.

2 Statistical Thermodynamics

(18L)

(22 L)

Configuration: Macrostates, microstates and configuration; calculation with harmonic oscillator, variation of W with E; equilibrium configuration.

Boltzmann distribution: Thermodynamic probability, entropy and probability, Boltzmann distribution formula (with derivation); Applications to barometric distribution; Partition function, concept of ensemble -canonical ensemble and grand canonical ensembles.

Partition function: molecular partition function and thermodynamic properties, Maxwell's speed distribution, Gibbs' paradox.

3 Special selected topics

Specific heat of solid: Coefficient of thermal expansion, thermal compressibility of solids; Dulong –Petit's law; Perfect Crystal model, Einstein's theory – derivation from partition function, limitations. Debye's T^3 law - analysis at two extremes.

3rd law: Absolute entropy, Plank's law, Calculation of entropy, Nernst heat theorem. Adiabatic demagnetization approach to zero Kelvin, adiabatic cooling, demagnetization, adiabatic demagnetization, involved curves.

Polymers: Classification of polymers, nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers; Criteria for synthetic polymer formation; Relationships between functionality, extent of reaction and degree of polymerization. Mechanism and kinetics of step growth & copolymerization, conducting polymers.

Reference Books

1.Castellan, G. W. Physical Chemistry, Narosa. 2. Levine, I. N. Physical Chemistry, Tata McGraw-Hill. 3. Moore, W. J. Physical Chemistry, Orient Longman. 4. Atkins, P. W. & Paula, J. de Atkins', Physical Chemistry, Oxford University Press. 5. McQuarrie, D. A. & Simons, J. D. Physical Chemistry: A Molecular Approach, Viva Press. 6. Engel, T. & Reid, P. Physical Chemistry, Pearson. 7. Nash, L. K. Elements of Statistical Thermodynamics, Dover. 8. Rastogi, R. P. & Misra, R.R. An Introduction to Chemical Thermodynamics, Vikas. 9. Zemansky, M. W. & Dittman, R.H. Heat

	Advanced Physical Chemistry	2 Credit
	Practical	
-	Programming based on numerical methods for:	
· · · · · · · · · · · · · · · · · · ·	equations: (e.g. volume of van der Waals gas and	
-	son with ideal gas, pH of a weak acid)	
	al differentiation (e.g., change in pressure for small change	
	e of a van der Waals gas, potentiometric titrations)	
	al integration (e.g. entropy/ enthalpy change from heat data), probability distributions (gas kinetic theory) and mean	
values	data), probability distributions (gas kinetie theory) and mean	
	perations (Application of Gauss-Siedel method in colourimetry)	
	exercises using molecular visualization software	
Reference Book	5	
_	D. A. Mathematics for Physical Chemistry University Science	
	8). 2. Mortimer, R. Mathematics for Physical Chemistry. 3rd Ed.	
	005). 3. Yates, P. Chemical Calculations. 2nd Ed. CRC Press Iarris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman	
· /	apters 3-5. 5. Noggle, J. H. Physical Chemistry on a	
· ,	iter. Little Brown & Co. (1985).	
CEMHTDSE-	Analytical Methods in Chemistry	4 Credit
2A	Analytical Methods in Chemistry	1 Of Call
Theory: Qu	alitative and quantitative, Optical methods of analysis. Therma lectroanalytical methods of analysis. Separation techniques	l and
Theory: Qu E		l and
Theory: Qu E 1. Qualitat Samplin	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision,	l and
Theory: Qu E 1. Qualitat Samplin methods	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate	l and
Theory: Qu E 1. Qualitat Samplin methods errors, st	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and	l and
Theory: Qu E 1. Qualitat Samplin methods errors, st confiden	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals	l and
Theory: Que E 1. Qualitat Samplin methods errors, st confiden 2. Optical	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)	l and
Theory: Qu E 1. Qualitat Samplin, methods errors, st confiden 2. Optical i) Origin o	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws	l and
Theory: Qu E 1. Qualitat Samplin methods errors, st confiden 2. Optical i) Origin o of spectr	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws oscopy and selection rules, validity of Beer-Lambert's law.	l and
Theory: Que E 1. Qualitat Samplin methods errors, st confiden 2. Optical i) Origin o of spectr ii) U	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws	l and
Theory: Query I. Qualitat Samplin methods errors, st confiden 2. Optical i) Origin of of spectr ii) U (choice beam inst	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws oscopy and selection rules, validity of Beer-Lambert's law.V-Visible Spectrometry: Basic principles of instrumentation of source, monochromator and detector) for single and double trument;	l and
Theory: Que E 1. Qualitat Samplin methods errors, st confiden 2. Optical i) Origin o of spectr ii) U (choice beam ins iii) B	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws oscopy and selection rules, validity of Beer-Lambert's law.V-Visible Spectrometry: Basic principles of instrumentation of source, monochromator and detector) for single and double trument;asic principles of quantitative analysis: estimation of metal ions	l and
Theory: Query I. Qualitat Samplin methods errors, st confiden 2. Optical i) Origin of of spectr ii) U (choice beam ins iii) B from ac	Iectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws oscopy and selection rules, validity of Beer-Lambert's law.V-Visible Spectrometry:Basic principles of instrumentation of source, monochromator and detector) for single and double trument;asic principles of quantitative analysis:estimation of metal ions jueous solution, geometrical isomers, keto-enol tautomers.	l and
Theory: Query I. Qualitat Samplin methods errors, st confiden 2. Optical i) Origin of of spectr ii) U (choice beam ins iii) B from ac Determin	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws oscopy and selection rules, validity of Beer-Lambert's law.V-Visible Spectrometry: Basic principles of instrumentation of source, monochromator and detector) for single and double trument;asic principles of quantitative analysis: estimation of metal ions pueous solution, geometrical isomers, keto-enol tautomers. hation of composition of metal complexes using Job's method of	l and
Theory: Que E 1. Qualitat Samplin methods errors, st confiden 2. Optical i) Origin o of spectr ii) U (choice beam ins iii) B from ac Determin continuo	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws oscopy and selection rules, validity of Beer-Lambert's law.V-Visible Spectrometry: Basic principles of instrumentation of source, monochromator and detector) for single and double trument;methods of quantitative analysis: estimation of metal ions pueous solution, geometrical isomers, keto-enol tautomers. hation of composition of metal complexes using Job's method of us variation and mole ratio method.	l and
Theory: Query: Query: Query: Query: Query: Query: Query: Query: An and An	lectroanalytical methods of analysis. Separation techniquesive and quantitative aspects of analysis(10L)g, evaluation of analytical data, errors, accuracy and precision, of their expression, normal law of distribution of indeterminate atistical test of data; F, Q and t test, rejection of data, and ce intervals(20L)methods of analysis(20L)f spectra, interaction of radiation with matter, fundamental laws oscopy and selection rules, validity of Beer-Lambert's law.V-Visible Spectrometry: Basic principles of instrumentation of source, monochromator and detector) for single and double trument;asic principles of quantitative analysis: estimation of metal ions pueous solution, geometrical isomers, keto-enol tautomers. hation of composition of metal complexes using Job's method of	l and

interpretation of data, Effect and importance of isotope substitution.

- v)**Flame Atomic Absorption and Emission Spectrometry:** Basic principles of instrumentation (choice of source, monochromator, and detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.
- vi) **Thermal methods of analysis:** Theory of thermogravimetry (TG), instrumentation. Composition determination of Ca and Mg from their mixture.

4. Electroanalytical methods

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values.

5. Separation techniques

(12L)

(10L)

- i. **Solvent extraction:** Classification, principle and efficiency of the technique. Mechanism of extraction: extraction by solvation and chelation.
- ii. **Technique of extraction:** batch, continuous and counter current extractions.
- iii. **Qualitative and quantitative aspects of solvent extraction**: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media.
- iv. **Chromatography:** Classification, principle and efficiency of the technique. Mechanism of separation: adsorption, partition & ion exchange.
- v. **Development of chromatograms:** frontal, elution and displacement methods
- vi. Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC.
- vii. Separation and analysis using GC and HPLC (dye and pesticide analysis)
- viii. Role of computers in instrumental methods of analysis

Reference Books

Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.2. Willard, H.H. Et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988. 3. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004. 4. Harris, D.C.: Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016. 5. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009. 6. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Ed. 7. Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Elles Harwood Series on Analytical Chemistry, John Wiley & Sons, 1979. 8. Ditts, R.V. Analytical Chemistry; Methods of separation, van Nostrand, 1974.

673) (II		— • • • •	
СЕМН	TDSE- 2B	Polymer Chemistry	4Credit
Crysta	lization and	ion, Functionality and its importance, Kinetics of Polymeriza I crystallinity, Nature and structure of polymers, molecular v Insition temperature (Tg) , polymer solution, Properties of po	tion, veight of
1.	Introduction	on and history of polymeric materials (4L)	
		schemes of classification of polymers, Polymer	
		are, Molecular forces and chemical bonding in polymers,	
-	Texture of	·	
2.		lity and its importance (6L)	
		synthetic polymer formation, classification of polymerization	
	-	elationships between functionality, extent of reaction and polymerization. Bi-functional systems, Poly- functional	
	systems.	porymenzation. Di-functional systems, 101y- functional	
3	•	E Polymerization (8L)	
		and kinetics of step growth, radical chain growth, ionic	
		cationic and anionic) and coordination polymerizations.	
4.	Crystalliza	tion and crystallinity (4L)	
		ion of crystalline melting point and degree of	
		y, Morphology of crystalline polymers, Factors affecting	
	•	melting point.	
5.		d structure of polymers (4L)	
		roperty relationships.	
6.		tion of molecular weight of polymers (6L) etc) by end group analysis, viscometry, light scattering and	
		ressure methods. Molecular weight distribution and its	
	-	e. Polydispersity index.	
7.	-	sition temperature (Tg) and determination of Tg (4L)	
8.		the theory, WLF equation, Factors affecting glass transition	
	temperature		
9.	Polymer Se	olution (10L)	
	Criteria for	polymer solubility, Solubility parameter, Thermodynamics of	
		lutions, entropy, enthalpy, and free energy change of mixing of	
		solutions, Flory-Huggins theory, Lower and Upper critical	
	solution ten	nperatures.	
9.	Properties	of Polymer (14L)	
	-	hermal, Flow & Mechanical Properties)	
	Brief int	=	
		n of the following polymers:	
	Polyolefins	s, polystyrene and styrene copolymers, poly(vinyl chloride)	
		l polymers, poly(vinyl acetate) and related polymers, acrylic	
		fluoro polymers, Polyamides and related polymers. Phenol	
	•	de resins (Bakelite, Novalac), polyurethanes, silicone	
	polymers,	polydienes, Polycarbonates, Conducting Polymers,	

[polyacety] polythiophe	ene, polyaniline, poly(p-phenylene sulphide polypyrrole, ene)].	
Dekker, Inc. New Wiley, 2004. F.V Interscience, 197 Hill Education,	 c C.E. Carraher: Polymer Chemistry: An Introduction, Marcel York, 1981. 2. G. Odian: Principles of Polymerization, 4th Ed. W. Billmeyer: Textbook of Polymer Science, 2nd Ed. Wiley 1. P. Ghosh: Polymer Science & Technology, Tata McGraw- 1991. 5. R.W. Lenz: Organic Chemistry of Synthetic High ience Publishers, New York, 1967. 	
CEMHPDSE-2A	Analytical Methods in Chemistry	2 Credit
	Practical	
Separation Techn	iques – Chromatography	
Ý 1	mixtures: Separation and identification of the monosaccharides	
present in the give	ven mixture (glucose & fructose) by paper chromatography.	
Reporting the RF v		
· •	nixture of Sudan yellow and Sudan Red by TLC technique and	
•	n on the basis of their RF values.	
	aphic separation of the active ingredients of plants, flowers and	
juices by TL		
Solvent Extraction		
extractin	rate a mixture of Ni^{2+} & Fe ²⁺ by complexation with DMG and ag the Ni^{2+} - DMG complex in chloroform, and determine its ration by spectrophotometry.	
2) Analysis		
b) Total	mination of pH of soil. soluble salt	
	ation of calcium, magnesium, phosphate, nitrate	
3) Ion exch	6	
anion	mination of exchange capacity of cation exchange resins and exchange resins.	
Spectrophotomet	-	
	ion of pK_a values of indicator using spectrophotometry	
	ion of chemical oxygen demand (COD)	
•	ion of Biological oxygen demand (BOD)	
Reference Books	I Vacal'a Quantitativa Chamical Analysia (th Ed. Desered	
	A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, ,H.H. Et al.: Instrumental Methods of Analysis, 7th Ed.	
	lishing Company, Belmont, California, USA, 1988. 3.	
	halytical Chemistry, 6th Ed. John Wiley & Sons, New York,	
	D.C.: Exploring Chemical Analysis, 9th Ed. New York, W.H.	
	Khopkar, S.M. Basic Concepts of Analytical Chemistry. New	
	Publisher, 2009. 6. Skoog, D.A. Holler F.J. & Nieman, T.A.	
	rumental Analysis, Cengage Learning India Ed. 7. Mikes, O.	

Laboratory Hand Book of Chromatographic & Allied Methods, Elles Harwood Series on Analytical Chemistry, John Wiley & Sons, 1979. 8. Ditts, R.V. Analytical Chemistry; Methods of separation, van Nostrand, 1974.

EMH	PDSE-2B	Polymer Chemistry	2 Cree
		Practical	
1.	Polymer Synthesis		
	a. Free radical solution	n polymerization of styrene(St)/Methyl Methacrylate	
	(MMA) / Methyl Ac	crylate (MA) / Acrylic acid (AA).	
	b. Polymerization usi	ing benzoyl peroxide (BPO) / 2,2'-azo-bis-	
	isobutylonitrile (AIE	3N)	
	c. Preparation of nylon	u 66/6.	
2.	Polymer characterizat	tion	
	a. Determination of mo	plecular weight by viscometry:	
	i. Polyacrylamide-aq.N	NaNO ₂ solution	
	ii. Poly vinyl proplylid	ine (PVP) in water	
		e viscosity-average molecular weight of poly(vinyl	
	, , , ,	d the fraction of "head-to-head" monomer linkages	
	in the polymer.		
		olecular weight by end group analysis: Polyethylene	
	glycol (PEG) (OH g	1,	
	-	al properties of polymers	
	•	droxyl number of a polymer using colorimetric	
	method.		
	3. Polymer analysis		
	i)Estimation of the	amount of HCHO in the given solution by sodium	
	sulphite method.		
	ii) IR studies of polyr	ners	
	Reference Books		
	1.M.P. Stevens, Polyn	ner Chemistry: An Introduction, 3rd Ed., Oxford	
	University Press, 199	9. 2. H.R. Allcock, F.W. Lampe & J.E. Mark,	
	Contemporary Polyme	r Chemistry, 3rd ed. Prentice-Hall (2003). 3. F.W.	
		of Polymer Science, 3rd ed. Wiley-Interscience	
		Polymer Science and Technology, 2nd ed. Prentice-	
		Munk & T.M. Aminabhavi, Introduction to	
		ce, 2nd ed. John Wiley & Sons (2002). 6. L. H.	
	1 0	to Physical Polymer Science, 4th ed. John Wiley &	
		tevens, Polymer Chemistry: An Introduction 3rd ed.	
	•	Press (2005). 8. Seymour/ Carraher's Polymer	
	Chemistry 9th ed by (Charles E. Carraher, Jr. (2013).	

CEMHSE-1A	IT skills for Chemist	02
		Credit
1. Mathematics	(10L)	
	als, mathematical functions, polynomial expressions,	
	the exponential function, units of a measurement,	
	sion of units, constants and variables, equation of a straight line,	
plotting gra	-	
	in experimental techniques: Displaying uncertainties, nts in chemistry, decimal places, significant figures, combining	
quantities.	ins in chemistry, decimal places, significant figures, combining	
-	in measurement: types of uncertainties, combining	
-	es. Statistical treatment. Mean, standard deviation, relative error.	
	tion and the propagation of errors. Graphical and numerical data	
	Numerical curve fitting: the method of least squares	
(regression		
, U	operations on real scalar variables (e.g. manipulation of van der	
	nation in different forms). Roots of quadratic equations	
	and iteratively (e.g. pH of a weak acid). Numerical methods of	
	ts (Newton- Raphson, binary –bisection, e.g. pH of a weak acid	
Ũ	ng the ionization of water, volume of a van der Waals gas,	
	constant expressions).	
v. Differential	l calculus: The tangent line and the derivative of a function,	
numerical	differentiation (e.g., change in pressure for small change in	
	a van der Waals gas, potentiometric titrations).	
	integration (Trapezoidal and Simpson's rule, e.g.	
	halpy change from heat capacity data).	
2. Computer pro		
	s, bits, bytes, binary and ASCII formats, arithmetic expressions,	
	ations, inbuilt functions. Elements of the BASIC language.	
-	and commands. Logical and relative operators. Strings and	
• • •	d versus interpreted languages. Debugging. Simple programs	
-	pts. Matrix addition and multiplication. Statistical analysis.	
	for curve fitting, numerical differentiation and integration	
Newton-Raphson n	Simpson's rule), finding roots (quadratic formula, iterative,	
Newton-Kapilson n	letilod).	
3. Hands On	(10L)	
	y writing activities: Introduction to word processor and	
	drawing (ChemSketch) software. Incorporating chemical	
	chemical equations, and expressions from chemistry (e.g.	
	oltzmann distribution law, Bragg's law, van der Waals	
	tc.) into word processing documents.	
-	numeric data: Spreadsheet software (Excel), creating a	
	t, entering and formatting information, basic functions and	

spreadsheet, entering and formatting information, basic functions and formulae, creating charts, tables and graphs. Incorporating tables and

graphs into word processing documents. Simple calculations, plotting graphs using a spreadsheet (Planck's distribution law, radial distribution curves for hydrogenic orbitals, gas kinetic theory- Maxwell-Boltzmann distribution curves as function of temperature and molecular weight), spectral data, pressure-volume curves of van der Waals gas (van der Waals isotherms), data from phase equilibria studies. Graphical solution of equations.

- **iii Numeric modelling:** Simulation of pH metric titration curves. Excel functions LINEST and Least Squares. Numerical curve fitting, linear regression (rate constants from concentration- time data, molar extinction coefficients from absorbance data), numerical differentiation (e.g. handling data from potentiometric and pH metric titrations, pKa of weak acid), integration (e.g. entropy/enthalpy change from heat capacity data).
- iv. **Statistical analysis:** Gaussian distribution and Errors in measurements and their effect on data sets. Descriptive statistics using Excel. Statistical significance testing: The t test. The F test.
- v. Presentation: Presentation graphics

Reference Books

1. McQuarrie, D. A. Mathematics for Physical Chemistry University Science Books (2008). 2. Mortimer, R. Mathematics for Physical Chemistry. 3rd Ed. Elsevier (2005). 3. Steiner, E. The Chemical Maths Book Oxford University Press (1996). 4. Yates, P. Chemical calculations. 2nd Ed. CRC Press (2007). 5. Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5. 6. Levie, R. de, How to use Excel in analytical chemistry and in general scientific data analysis, Cambridge Univ. Press (2001) 487 pages. 7. Noggle, J. H. Physical chemistry on a Microcomputer. Little Brown & Co. (1985). 8. Venit, S.M. Programming in BASIC: Problem solving with structure and style. Jaico Publishing House: Delhi (1996).

CEMH	ISE-1B	Basic Analytical Chemistry	02 Credit
1.	Introduc	tion (2L)	
	Strategies	s of Analytical Chemistry and its interdisciplinary applicability.	
	Protocol	of sampling. Variability and validity of analytical measurements.	
		ion of experimental data and results, from the point of view of nt figures.	
	Complex	kometry	
	Complex	ometric titrations, Chelation, Chelating agents, use of indicators.	
		on of Calcium and Magnesium ions as Calcium carbonate by ometric titration.	
	Soil Ana	lysis	
	Composi content.	tion, pH of soil samples, estimation of calcium and magnesium	
2.	Analysis	of water (4L)	

	Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods. Determination of pH, acidity and alkalinity of a water sample.
	Determination of Biological Oxygen Demand (BOD).
3	Analysis of food products (4L)
0.	Nutritional value of foods, idea about food processing and food preservations and adulteration.
	Identification of adulterants in some common food items like coffee powder, asafoetida, chilli powder, turmeric powder, coriander powder and pulses, etc.
	Analysis of preservatives and colouring matter.
4.	Chromatography (4L)
	Definition, general introduction on principles of chromatography, paper chromatography, TLC etc. Paper chromatographic separation of mixture of metal ion (Fe3+ and Al3+). To compare paint samples by TLC method.
5.	Ion-exchange (4L)
-	Column, ion-exchange chromatography etc. Determination of ion
	exchange capacity of anion / cation exchange resin (using batch procedure
	if use of column is not feasible).
6.	Analysis of cosmetics (3L)
	Major and minor constituents and their function
	Analysis of deodorants and antiperspirants, Al, Zn, boric acid, chloride, sulphate. Determination of constituents of talcum powder: Magnesium
	oxide, Calcium oxide, Zinc oxide and Calcium carbonate by
7	complexometric titration
7.	complexometric titration
7.	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson
7. 8.	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.(3L)Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.(3L)Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.Spectrophotometric Identification and Determination of Caffeine and
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.(3L)Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.Spectrophotometric Identification and Determination of Caffeine and
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft DrinkSpectrophotometric
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft DrinkReference Books
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft DrinkReference Books1. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. 2. Skoog, D.A., Holler, F.J. & Crouch, S.
	complexometric titration(2L)Suggested Applications (Any one)(2L)To study the use of phenolphthalein in trap cases. To analyse arson accelerants.To carry out analysis of gasoline.Suggested Instrumental demonstrations(3L)Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.(3L)Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft DrinkReference Books1. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. 2. Skoog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007.
	 complexometric titration Suggested Applications (Any one) (2L) To study the use of phenolphthalein in trap cases. To analyse arson accelerants. To carry out analysis of gasoline. Suggested Instrumental demonstrations (3L) Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry. Spectrophotometric determination of Iron in Vitamin / Dietary Tablets. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drink Reference Books Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. 2. Skoog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007. Skoog, D.A.; West, D.M. & Holler, F.J. Analytical Chemistry: An
	 complexometric titration Suggested Applications (Any one) (2L) To study the use of phenolphthalein in trap cases. To analyse arson accelerants. To carry out analysis of gasoline. Suggested Instrumental demonstrations (3L) Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry. Spectrophotometric determination of Iron in Vitamin / Dietary Tablets. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drink Reference Books Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. 2. Skoog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007. Skoog, D.A.; West, D.M. & Holler, F.J. Analytical Chemistry: An Introduction 6th Ed., Saunders College Publishing, Fort Worth,
	 complexometric titration Suggested Applications (Any one) (2L) To study the use of phenolphthalein in trap cases. To analyse arson accelerants. To carry out analysis of gasoline. Suggested Instrumental demonstrations (3L) Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry. Spectrophotometric determination of Iron in Vitamin / Dietary Tablets. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drink Reference Books Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988. 2. Skoog, D.A., Holler, F.J. & Crouch, S. Principles of Instrumental Analysis, Cengage Learning India Edition, 2007. Skoog, D.A.; West, D.M. & Holler, F.J. Analytical Chemistry: An

	 Handbook, McGraw Hill, 2004. 6. Day, R. A. & Underwood, A. L. Quantitative Analysis, Prentice Hall of India, 1992. 7. Freifelder, D.M. Physical Biochemistry 2nd Ed., W.H. Freeman & Co., N.Y. USA (1982). 8. Cooper, T.G. The Tools of Biochemistry, John Wiley & Sons, N.Y. USA. 16 (1977). 9. Vogel, A. I. Vogel's Qualitative Inorganic Analysis 7th Ed., Prentice Hall, 1996. 10. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009. 11. Robinson, J.W. Undergraduate Instrumental Analysis 5th Ed., Marcel Dekker, Inc., New York (1995). 12. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004 	
CEMI	Semester - VI	
CEMH		4 Credit
Theo	ory: Bioinorganic Chemistry; Organometallic Chemistry and Catalysis: R Kinetics and Mechanism	eaction
1.	Bioinorganic Chemistry: (25L)	
	 Elements of life: essential and beneficial elements, major, trace and ultratrace elements. Basic chemical reactions in the biological systems and the role of metal ions (specially Na⁺, K⁺, Mg²⁺, Ca²⁺, Fe^{3+/2+}, Cu^{2+/+}, and Zn²⁺). Metal ion transport across biological membrane Na⁺/ K⁺-ion pump. Dioxygen molecule in life. Dioxygen management proteins: Haemoglobin, Myoglobin, Hemocyanine and Hemerythrin. Electron transfer proteins: Cytochromes and Ferredoxins. Hydrlytic enzymes: carbonate bicarbonate buffering system and carbonic anhydrase and carboxyanhydrase A. Biological nitrogen fixation, Photosynthesis: Photosystem-I and Photosystem-II. Toxic metal ions and their effects, chelation therapy (examples only), Pt and Au complexes as drugs (examples only), metal dependent diseases (examples only). 	
2.	Organometallic Chemistry and Catalysis:(25L)Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. 18-electron and 16- electron rules (pictorial MO approach). Applications of 18-electron rule to metal carbonyls, nitrosyls, cyanides. General methods of preparation of 	

- 3. Wacker Process
- 4. Synthetic gasoline (Fischer Tropsch reaction)
- 5. Ziegler-Natta catalysis for olefin polymerization.

3. Reaction Kinetics and Mechanism:

(10L)

Introduction to inorganic reaction mechanisms. Substitution reactions in square planar complexes, Trans- effect and its application in complex synthesis, theories of trans effect, Mechanism of nucleophilic substitution in square planar complexes, Thermodynamic and Kinetic stability, Kinetics of octahedral substitution, Ligand field effects and reaction rates, Mechanism of substitution in octahedral complexes.

Reference Books

1.Lippard, S.J. & Berg, J.M. Principles of Bioinorganic Chemistry Panima Publishing Company 1994. 2. Huheey, J. E.; Keiter, E.A. & Keiter, R.L. Inorganic Chemistry, Principles of Structure and Reactivity 4th Ed., Harper Collins 1993, Pearson,2006. 3.Greenwood, N.N. & Earnshaw A. Chemistry of the Elements, Butterworth- Heinemann, 1997. 4.Cotton, F.A., Wilkinson, G., Murrillo, C. A., Bochmann, M., Advanced Inorganic Chemistry 6th Ed. 1999., Wiley. 5.Bertini, I., Gray, H. B., Lippard, S.J., Valentine, J. S., Viva, 2007. 6.Basolo, F, and Pearson, R.C. Mechanisms of Inorganic Chemistry, John Wiley & Sons, NY, 1967. 7. Purecell, K.F. and Kotz, J.C., An Introduction to Inorganic Chemistry, Saunders: Philadelphia, 1980. 8. Powell, P. Principles of Organometallic Chemistry, Chapman and Hall, 1988. 9.Collman, J. P. et al. Principles and Applications of Organotransition Metal Chemistry. Mill Valley, CA: University Science Books, 1987. 10.Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. New York, NY: John Wiley, 2000.

CEMHP-13	Inorganic Chemistry – V	2 Credit
	Practical	
Qualitative s	emimicro analysis	
Emphasis	we semimicro analysis of mixtures containing four radicals. Is should be given to the understanding of the chemistry of reactions and to assign the most probable composition.	
Cation H Co ²⁺ /Co ³⁺ NH ⁺ , M	Radicals : Na ⁺ , K ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Al ³⁺ , Cr ³⁺ , Mn ²⁺ /Mn ⁴⁺ , Fe ³⁺ , , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , Pb ²⁺ , Cd ²⁺ , Bi ³⁺ , Sn ²⁺ /Sn ⁴⁺ , As ³⁺ /As ⁵⁺ , Sb ^{3+/5+} , g^{2+} .	
	adicals: F ⁻ , Cl ⁻ , Br ⁻ , BrO ₃ ⁻ , I ⁻ , IO ₃ ⁻ , SCN ⁻ , S ²⁻ , SO ^{4/2-} , NO ₃ ⁻ , NO ₂ ⁻ , $O_3^{3^-}$, CrO ₄ ²⁻ / Cr ₂ O ₇ ²⁻ , Fe(CN) ₆ ⁴⁻ , Fe(CN) ₆ ³⁻ .	
Insoluble CaF ₂ , PbS	Materials : Al ₂ O ₃ (ig), Fe ₂ O ₃ (ig), Cr ₂ O ₃ (ig), SnO ₂ , SrSO ₄ , BaSO ₄ , O ₄ .	

CEMHT-14	Physical Chemistry – IV	4 Credi
Μ	olecular Spectroscopy, Photochemistry, Surface Phenomenon	
 Molect Interact of spe Rotati determ isotop Vibra of fo anharr freque molect vibrati Rama Vibrati nuclea NMR resolu resolu Electr structu 	 ular Spectroscopy (24 L) ction of electromagnetic radiation with molecules and various types ctra; Born-Oppenheimer approximation ion spectroscopy: Selection rules, intensities of spectral lines, initation of bond lengths of diatomic and linear triatomic molecules, ic substitution. tional spectroscopy: Classical equation of vibration, computation rce constant, amplitude of diatomic molecular vibrations, nonicity, Morse potential, dissociation energies, fundamental ncies, overtones, hot bands, degrees of freedom for polyatomic ules, modes of vibration, concept of group frequencies; Diatomic ng rotator, P, Q, R branches. n spectroscopy: Qualitative treatment of Rotational Raman effect; ional Raman spectra, Stokes and anti-Stokes lines. Effect of r spin, their intensity difference, rule of mutual exclusion. ar Magnetic Resonance (NMR) spectroscopy: Principles of spectroscopy, Larmor precession, chemical shift and low tion spectra, different scales, spin-spin coupling and high tion spectra, interpretation of PMR spectra of organic molecules. con Spin Resonance (ESR) spectroscopy: Its principle, Hyperfine tre, ESR of simple radicals. 	
Lamb Lamb absorp photo and hi Photo Frank Bond (grour paths; diagra Rate differe	chemistry(18 L)ert-Beer's law: Characteristics of electromagnetic radiation, ert- Beer's law and its limitations, physical significance of otion coefficients; Laws of photochemistry, Stark-Einstein law of chemical equivalence quantum yield, actinometry, examples of low gh quantum yields.chemical Processes: Potential energy curves (diatomic molecules), Condon principle and vibrational structure of electronic spectra; dissociation and principle of determination of dissociation energy ad state); Decay of excited states by radiative and non-radiative Pre-dissociation; Fluorescence and phosphorescence, Jablonskii m.of Photochemical processes: Photochemical equilibrium and the ential rate of photochemical reactions, Photostationary state; HI uposition, H2-Br2 reaction, dimerisation of anthracene;	

biochemical processes, photostationary states, chemiluminescence.

3. Surface phenomenon

(**18** L)

Surface tension and energy: Surface tension, surface energy, excess pressure, capillary rise and surface tension; Work of cohesion and adhesion, spreading of liquid over other surface; Vapour pressure over curved surface; Temperature dependence of surface tension.

Adsorption: Physical and chemical adsorption; Freundlich and Langmuir adsorption isotherms; multilayer adsorption and BET isotherm (no derivation required); Gibbs adsorption isotherm and surface excess; Heterogenous catalysis (single reactant); Zero order and fractional order reactions.

Colloids: Lyophobic and lyophilic sols, Origin of charge and stability of lyophobic colloids, coagulation and Schultz-Hardy rule, Zeta potential and Stern double layer (qualitative idea), Tyndall effect; Electrokinetic phenomena (qualitative idea only); Determination of Avogadro number by Perrin's method; Stability of colloids and zeta potential; Micelle formation.

Reference Books

 Castellan, G. W. Physical Chemistry, Narosa. 2. Levine, I. N. Physical Chemistry, Tata McGraw-Hill . 3. Atkins, P. W. & Paula, J. de Atkin's, Physical Chemistry, Oxford University Press. 4. McQuarrie, D. A. & Simons, J. D. Physical Chemistry: A Molecular Approach, Viva Press. 5. Mortimer, R. G. Physical Chemistry, Elsevier. 6. Laidler, K. J.Chemical Kinetics, Pearson. 7. Banwell, C. N. Fundamentals of Molecular Spectroscopy, Tata-McGraw-Hill. 8. Barrow, G. M. Molecular Spectroscopy, McGraw- Hill. 9. Hollas, J.M. Modern Spectroscopy, Wiley India. 10. McHale, J. L. Molecular Spectroscopy, Pearson Education. 11. Wayne, C. E. & Wayne, R. P. Photochemistry, OUP. 12. Brown, J. M. Molecular Spectroscopy, OUP. 13. Levine, I. N. Quantum Chemistry, PHI. 14 Atkins P. W. Molecular Quantum Mechanics, Oxford

11. Atkins, 1. W. Woleediar Qualitari Meenanes, Oxford.		
CEMHP-14	Physical Chemistry – IV	2 Credit
Practical		

- 1. Determination of surface tension of a liquid using Stalagmometer.
- 2. Determination of CMC from surface tension measurements.
- **3.** Verification of Beer and Lambert's Law for $KMnO_4$ and $K_2Cr_2O_7$ solution.
- **4.** Study of kinetics of $K_2S_2O_8$ + KI reaction, spectrophotometrically.
- 5. Determination of pH of unknown buffer, spectrophotometrically.
- 6. Spectrophotometric determination of CMC.

Reference Books

Viswanathan, B., Raghavan, P.S. Practical Physical Chemistry Viva Books (2009). Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson. 3. Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman

СЕМНТ	TDSE-3A Instrumental Methods of Chemical Analysis	4 Cred
Theor	y: Instrumental Methods of Chemical Analysis	
1.	Introduction to spectroscopic methods of analysis (8L) Recap of the spectroscopic methods covered in detail in the core chemistry	
2.	syllabus: Classification of analytical methods and the types of instrumental methods. Consideration of electromagnetic radiation	
	Principles of Gas chromatography, liquid chromatography, supercritical fluid chromatography, Importance of column chromatographic technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field) Detection of different samples, single and coupled / hyphenated detector	
	Elemental analysis (12L)	
	Mass spectrometry (electrical discharges). Atomic spectroscopy: Atomic absorption, Atomic emission, and Atomic fluorescence.	
	Excitation and atomisation (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix effects, other interferences).	
5.	NMR spectroscopy (6L)	1

1	Application			
6.		lytical techniques	(4L)	
1	Potentiome	try & Voltammetry		
1				
		ical Methods: Elementary idea	(2L)	
8.	Basic idea analysis)	of X-ray analysis and electron	a spectroscopy (surface (2L)	
	of Instrum Willard, M IBH Book Chemistry, Atomic an Cambridge Chemistry Fundament Delhi (200	og, F.J. Holler & S. Crouch (ISBN 0 ental Analysis, Cengage Learning erritt, Dean, Settle, Instrumental Meth House, New Delhi. 3. Atkins, P.W 10th Ed., Oxford University Press ad Molecular Spectroscopy: Conc University Press, 2015. 5. Ca 4th Ed., Narosa (2004).6. Banwell, als of Molecular Spectroscopy 4th Ed. 06). 7. Smith, B.C. Infrared S	India Edition, 2007. 2. hods of Analysis, 7th ed, / & Paula, J.D. Physical (2014). 4. Kakkar, R. cepts and Applications. Istellan, G. W. Physical C. N. & McCash, E. M. Tata McGraw-Hill: New Spectral Interpretations:A	
		Approach. CRC Press, 1998. 8. Orient Blackswan, 1999.	Moore, W.J., Physical	
	Chemistry	Drient Blackswan, 1999.		
CEMH				4
	Chemistry	Drient Blackswan, 1999.		4 credits
	Chemistry	Drient Blackswan, 1999.		-

4. Fertilizers

Different types of fertilizers. Manufacture of the following fertilizers: Urea, ammonium nitrate, calcium ammonium nitrate, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate.

5. Surface Coatings

Objectives of coatings surfaces, preliminary treatment of surface, classification of surface coatings. Paints and pigments-formulation, composition and related properties. Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents. Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax polishing, Water and Oil paints, additives, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

6.Batteries

Primary and secondary batteries, battery components and their role, Characteristics of Battery. Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell.

7.Alloys

Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization, demanganization, desulphurization dephosphorisation) and surface treatment (Ar and heat treatment, nitriding, carburizing). Composition and properties of different types of steels.

8.Catalysis

General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts. Phase transfer catalysts, application of zeolites as catalysts.

9. Chemical explosives

Origin of explosive properties in organic compounds, preparation and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants.

Reference Book

1.E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2. R. M. Felder, R. W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to Ceramics, Wiley Publishers, New Delhi. 4. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, New Delhi. 5. P. C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi. 6. R. Gopalan, D.

CEMHPDSE-3A	Instrumental methods of Chemical Analysis	2 credit
1) Safety Prac	tices in the Chemistry Laboratory	
2) Determinat	ion of Cobalt and Nickel from mixture	
3) Study of E water)	Electronic Transitions in Organic Molecules (i.e., acetone in	
4) IR Absorpt	ion Spectra (Study of Aldehydes and Ketones)	
5) Determinat	ion of Calcium, Iron, and Copper in Food by Atomic Absorption	
/	tric Titration of a Chloride - Iodide Mixture	
7) Analysis of		
accelerants	n the field and confirmation in the laboratory of flammable or explosives	
9) Detection o		
	f pollutants from wastes.	
11) Fibre analy		
,	rve of an amino acid.	
	ion of the void volume of a gel filtration column.	
	form and carbon tetrachloride)	
· •	of Carbohydrates by HPLC	
	ion of Caffeine in Beverages by HPLC	
•	tammetry of the Ferrocyanide/ Ferricyanide Couple	
	agnetic Resonance	
body fluids		
-	sumptive tests" for anthrax or cocaine	
DNA testin	0	
	pillary electrophoresis with laser fluorescence detection for	
	A (Y chromosome only or multiple chromosome)	
23) Use of sequ	encing for the analysis of mitochondrial DNA	
Reference Books		
1.Skoog, D.A. Ho Cengage Learning	oller F.J. & Nieman, T.A. Principles of Instrumental Analysis, g India Ed. 2. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, Methods of Analysis, 7th Ed. Wadsworth Publishing Company	

CEMHP E-3B	PDS Inorganic materials of industrial importance	2 credits
List of P	racticals	
 2. Estima 3. Estim 4. Electr 5. Determ 6. Analys 	nination of free acidity in ammonium sulphate fertilizer. ation of Calcium in Calcium ammonium nitrate fertilizer. ation of phosphoric acid in superphosphate fertilizer. roless metallic coatings on ceramic and plastic material. nination of composition of dolomite (by complexometric titration). sis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples. vsis of Cement. 8. Preparation of pigment (zinc oxide).	
R. W. Ro New De Ceramics Industria Engineer Venkapp	cchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2. R. M. Felder, ousseau: Elementary Principles of Chemical Processes, Wiley Publishers, lhi. 3. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to s, Wiley Publishers, New Delhi. 4. J. A. Kent: Riegel's Handbook of l Chemistry, CBS Publishers, New Delhi. 5.P. C. Jain, M. Jain: ing Chemistry, Dhanpat Rai & Sons, Delhi. 6. R. Gopalan, D. ayya, S. Nagarajan: Engineering Chemistry, Vikas Publications, New	
Meerut () CEMHT		4 Credit
Theory:	Introduction to Green Chemistry, Principles of Green Chemistry and D	esigning
	a Chemical synthesis, Examples, Future Trends	
	Introduction to Green Chemistry: (4L) What is Green Chemistry? Need for Green Chemistry, Coole of Green	
(What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry	
	Principles of Green Chemistry and Designing a Chemical synthesis: (27 L)	
	Twelve principles of Green Chemistry with their explanations and examples and special emphasis on the following:	
t	Designing a Green Synthesis using these principles; Prevention of Waste/ oyproducts; maximum incorporation of the materials used in the process nto the final products, Atom Economy, calculation of atom economy of	
t I	he rearrangement, addition, substitution and elimination reactions. Prevention/ minimization of hazardous/ toxic products reducing toxicity.	
ł	risk = (function) hazard \times exposure; waste or pollution prevention nierarchy. Green solvents– supercritical fluids, water as a solvent for organic	
r	reactions, ionic liquids, fluorous biphasic solvent, PEG, solventless processes, immobilized solvents and how to compare greenness of	

solvents.

Energy requirements for reactions – alternative sources of energy: use of microwaves and ultrasonic energy.

Selection of starting materials; avoidance of unnecessary derivatization – careful use of blocking/protecting groups.

Use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; catalysis and green chemistry, comparison of heterogeneous and homogeneous catalysis, biocatalysis, asymmetric catalysis and photocatalysis.

Prevention of chemical accidents designing greener processes, inherent safer design, principle of ISD "What you don't have cannot harm you", greener alternative to Bhopal Gas Tragedy (safer route to carcarbaryl) and Flixiborough accident (safer route to cyclohexanol) subdivision of ISD, minimization, simplification, substitution, moderation and limitation. Strengthening/ development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.

3. Examples of Green Synthesis/ Reactions and some real world cases

(25 L)

Green Synthesis of the following compounds: adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis)

Microwave assisted reactions in water: Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols; microwave assisted reactions in organic solvents Diels-Alder reaction and Decarboxylation reaction

Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine)

Surfactants for carbon dioxide – replacing smog producing and ozone depleting solvents with CO₂ for precision cleaning and dry cleaning of garments.

Designing of Environmentally safe marine antifoulant.

Right fit pigment: synthetic azopigments to replace toxic organic and inorganic pigments.

An efficient, green synthesis of a compostable and widely applicable plastic (poly lactic acid) made from corn.

Healthier Fats and oil by Green Chemistry: Enzymatic Inter esterification for production of no Trans-Fats and Oils

Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting

4. Future Trends in Green Chemistry:

(4L)

Oxidation reagents and catalysts; Biomimetic multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; co crystal controlled solid state synthesis (C_2S_3); Green chemistry in sustainable development.

Defer	n e De des	
1. A Oxfo	ence Books anastas, P.T. & Warner, J.K.: Green Chemistry - Theory and Practical, ord University Press (1998). 2. Matlack, A.S. Introduction to Green mistry, Marcel Dekker (2001). 3. Cann, M.C. & Connely, M.E. Real-World	
Ryai	s in Green Chemistry, American Chemical Society, Washington (2000). 4. n, M.A. & Tinnesand, M. Introduction to Green Chemistry, American	
	mical Society, Washington (2002). 5. Lancaster, M. Green Chemistry: An oductory Text RSC Publishing, 2nd Edition, 2010.	
CEMH	IPDSE- 4 Green Chemistry	2 Credit
	Practical	
	fer starting materials: eparation and characterization of nanoparticles of gold using tea leaves.	
	sing renewable resources: eparation of biodiesel from vegetable/ waste cooking oil.	
3.	Avoiding waste: Principle of atom economy. Use of molecular model kit to stimulate the reaction to investigate how the atom economy can illustrate Green Chemistry.	
	Preparation of propene by two methods can be studied	
	a. Triethylamine ion + $OH^- \rightarrow propene + trimethylpropene + water$	
	b. 1-propanol $\xrightarrow{H_2SO_4/\Delta}$ Propene + water	
4.	Other types of reactions, like addition, elimination, substitution and rearrangement should also be studied for the calculation of atom economy. Use of enzymes as catalysts: Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide.	
5.	Alternative Green solvents: Extraction of D-limonene from orange peel using liquid CO ₂ prepared from dry ice. Mechanochemical solvent free synthesis of azomethines	
6.	Alternative sources of energy: Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper (II). Photoreduction of benzophenone to benzopinacol in the presence of sunlight.	

Reference Books

1.Anastas, P.T & Warner, J.C. Green Chemistry: Theory and Practice, Oxford University Press (1998). 2. Kirchoff, M. & Ryan, M.A. Greener approaches to undergraduate chemistry experiment. American Chemical Society, Washington DC (2002). 3. Ryan, M. A. Introduction to Green Chemistry, Tinnesand; (Ed), American Chemical Society, Washington DC (2002). 4. Sharma, R. K.; Sidhwani, I. T. & Chaudhari, M. K. I. K. Green Chemistry Experiment: A monograph International Publishing House Pvt Ltd. New Delhi. Bangalore CISBN 978-93-81141-55-7 (2013). 5. Cann, M. C. & Connelly,M. E. Real world cases in Green Chemistry, American Chemical Society (2008). 6. Cann, M. C. & Thomas, P. Real world cases in Green Chemistry: American Chemical Society (2008). 7. Lancaster, M. Green Chemistry: An Introductory Text RSC Publishing, 2nd Edition, 2010. 8. Pavia, D. L., Lampman, G. M., Kriz, G. S. & Engel, R. G. Introduction to Organic Laboratory Techniques: A Microscale and Macro Scale Approach, W.B.Saunders, 1995.

DSEPROJ-5

Project

6 credits

CEMHSE-2A	Pharmaceutical Chemistry	2 Credit

1.	Drugs & Pharmaceuticals: (16L)	
	Drug discovery, design and development; Basic Retrosynthetic approach.	
	Synthesis of the representative drugs of the following classes: analgesics	
	agents, antipyretic agents, anti-inflammatory agents (Aspirin,	
	paracetamol, lbuprofen); antibiotics (Chloramphenicol); antibacterial and	
	antifungal agents (Sulphonamides; Sulphanethoxazol, Sulphacetamide,	
	Trimethoprim); antiviral agents (Acyclovir), Central Nervous System	
	agents (Phenobarbital, Diazepam), Cardiovascular (Glyceryl trinitrate),	
	antilaprosy (Dapsone), HIV-AIDS related drugs (AZT- Zidovudine).	
2.	Fermentation: (7L)	
	Aerobic and anaerobic fermentation. Production of (i) Ethyl alcohol and	
	citric acid, (ii) Antibiotics; Penicillin, Cephalosporin, Chloromycetin and	
	Streptomycin, (iii) Lysine, Glutamic acid, Vitamin B2, Vitamin B12 and	1
	Vitamin C. Vitamin C. Vitamin C.	
3.		

Preparation of Aspirin and its analysis. Preparation of magnesium bisilicate (Antacid).

Reference Books

 Patrick, G. L. Introduction to Medicinal Chemistry, Oxford University Press, UK, 2013.2.Singh, H. & Kapoor, V.K. Medicinal and Pharmaceutical Chemistry, Vallabh Prakashan, Pitampura, New Delhi, 2012. 3. Foye, W.O., Lemke, T.L. & William, D.A.: Principles of Medicinal Chemistry 4th edition B.I Waverly Pvt. Ltd. New Delhi

CEMHSE-2B	Analytical Clinical Biochemistry	2 Credit
Concept of c	arbohydrates, Proteins, Enzyms, Lipids; Biochemistry of disease	
	riew of concepts of core course (8L)	
Car cellu ferm poly Prot and char Enz class stere inhii Che Lipi phos thein Prop	bohydrates: Biological importance of carbohydrates, metabolism ilar currency of energy(ATP), Glycolysis, Alcoholic and lactic acid ientation, Kreb's cycle. Isolation and characterization of saccharides. teins: Classification, biological importance, Primary and secondary tertiary structures of proteins: α -helix β –pleated sheets, isolation, acterization, denaturation of proteins. ymes: Nomenclature, characterization (mention of ribozymes) and sification, active site, Mechanism of enzyme action, eospecificity of enzymes, coenzymes and cofactors, enzyme bitors, Introduction to biocatalysts, Importance in "Green mistry" and chemical industry. ds: Classification, Biological importance of triglycerides and sphoglycerides and cholesterol: Lipid membrane, Liposomes and biological functions and underlying applications, Lipoproteins, perties, functions and biochemical functions of steroid hormones,	
2. Bioc analysi Bloc colle estir chol Urin cons 3. Han Identifi i)Cart ii) Lip iii) De iv) Det v) Det vi) Pro	chemistry of peptide hormones. chemistry of disease : A diagnostic approach by blood / urine s (12L) od: Composition and functions of blood, blood coagulation ,blood ection and preservation of samples. Anaemia, Regulation, nation and interpretation of data for blood sugar, urea, creatinine, esterol and bilirubin ne: Sampling and preservation, composition and estimation of stituents of normal and pathological urine. ds on Practical (10L) cation and estimation of the following : bohydrates- qualitative and quantitative bids- qualitative etermination of iodine number of oil etermination of saponification number of oil etermination of cholesterol using Liebermann-Burchard reaction. betons- qualitative blation of protein	

viii) Determination of protein by the Biuret reaction ix) Determination of nucleic acids

Reference Books

1.Cooper, T.G. Tool of Biochemistry. Wiley-Blackwell (1977). 2. Wilson, K. & Walker, J. Practical Biochemistry. Cambridge University Press (2009). 3. Varley, H., Gowenlock, A.H & Bell, M.: Practical Clinical Biochemistry, Heinemann, London (1980). 4. Devlin, T.M., Textbook of Biochemistry with Clinical Correlations, John Wiley & Sons, 2010. 5. Berg, J.M., Tymoczko, J.L. & Stryer, L. Biochemistry, W.H. Freeman, 2002. 6. Talwar, G.P. & Srivastava, M. Textbook of Biochemistry and Human Biology, 3rd Ed. PHI Learning. 7. Nelson, D.L. & Cox, M.M. Lehninger Principles of Biochemistry, W.H. Freeman, 2013. 8. O. Mikes, R.A. Chalmers: Laboratory Handbook of Chromatographic Methods, D. Van Nostrand & Co., 1961.

N.B.: Please ignore typographical error if any.