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Group – A 

Answer any four questions        1X4=4 

1. (a) Define the Coset of a group G.  

   (b)Write down the number of elements in Sn and A6. 

  (c ) Let G be a finite group of 84 elements. Find the size of a largest possible   
       proper subgroup of G.  

(d) What type of permutation (3 4 5 6),   even or odd?

 (e) Define Prime and maximal ideals. 

Group-B 

Answer any two questions        2X5=10 

2. State And prove first isomorphism theorem.  
 
  
3.  Show that for Rings If 𝑓𝑓:𝑅𝑅 → 𝑆𝑆   is a ring homomorphism with kernel K, then the 
image of f is isomorphic to R/K. 
 
 
4.  Show that every proper ideal I of the ring R is contained in a maximal ideal. 
Consequently, every ring has at least one maximal ideal. 
 
 
5.  Prove that if f and g are polynomials in R[X], with g monic, there are unique 
polynomials q  and r in  R[X] such that f = q g + r and deg r <deg g. If R is a field, g 
can be any nonzero polynomial. 
 
 
         
 
 



 

Group-C 

Answer any two questions        2X9=18 

 

6.a)  Let G be the additive group of  integers. Then prove that the set of integers of  
        multiple of 6 is a subgroup of G. 
    b) If a is prime, then a is irreducible, but not conversely test the validity of the  
       statement. 
 
7. Let H and N be subgroups of G, with N normal in G. Then prove that 
             (i) HN = NH, and therefore, HN is a subgroup of G.  
             (ii) N is a normal subgroup of HN.  
            (iii) H ∩ N is a normal subgroup of H. 
 
 8. a) Find all homomorphisms from (ℤ8, +)  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (ℤ6, +)    
     b) prove that ℤ9  is not a homiomorphic image of ℤ16. 
 
 9.a) Let G, G1 be two groups. 𝑓𝑓:𝐺𝐺 → 𝐺𝐺1be an isomorphism. Prove that G is  
         commutative iff  G1 is commutative.  
 
       b) Define a normal subgroup of a group, Let G be a group and H be a subgroup  
    of G. If for all a, b ∈ G, ab ∈ H implies ba ∈ H. Prove that H is a normal subgroup of G.   
 

 


